1
|
Bernier A, Knoppers BM, Bermudez P, Beauvais MJS, Thorogood A. Open Data governance at the Canadian Open Neuroscience Platform (CONP): From the Walled Garden to the Arboretum. Gigascience 2024; 13:giad114. [PMID: 38217404 PMCID: PMC10787360 DOI: 10.1093/gigascience/giad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/14/2023] [Accepted: 12/10/2023] [Indexed: 01/15/2024] Open
Abstract
Scientific research communities pursue dual imperatives in implementing strategies to share their data. These communities attempt to maximize the accessibility of biomedical data for downstream research use, in furtherance of open science objectives. Simultaneously, such communities safeguard the interests of research participants through data stewardship measures and the integration of suitable risk disclosures to the informed consent process. The Canadian Open Neuroscience Platform (CONP) convened an Ethics and Governance Committee composed of experts in bioethics, neuroethics, and law to develop holistic policy tools, organizational approaches, and technological supports to align the open governance of data with ethical and legal norms. The CONP has adopted novel platform governance methods that favor full data openness, legitimated through the use of robust deidentification processes and informed consent practices. The experience of the CONP is articulated as a potential template for other open science efforts to further build upon. This experience highlights informed consent guidance, deidentification practices, ethicolegal metadata, platform-level norms, and commercialization and publication policies as the principal pillars of a practicable approach to the governance of open data. The governance approach adopted by the CONP stands as a viable model for the broader neuroscience and open science communities to adopt for sharing data in full open access.
Collapse
Affiliation(s)
- Alexander Bernier
- Centre of Genomics and Policy, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, 740, Dr Penfield Ave, suite 5200, Montréal, Québec H3A 0G1, Canada
| | - Bartha M Knoppers
- Centre of Genomics and Policy, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, 740, Dr Penfield Ave, suite 5200, Montréal, Québec H3A 0G1, Canada
| | - Patrick Bermudez
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Michael J S Beauvais
- Faculty of Law, University of Toronto, Falconer Hall, 84 Queens Park, Toronto, Ontario M5S 2C5, Canada
| | - Adrian Thorogood
- The Terry Fox Research Institute, 110 Pine Ave W, Montreal, Quebec H2W IR7, Canada
| |
Collapse
|
2
|
Mouttham L, Castelhano MG, Akey JM, Benton B, Borenstein E, Castelhano MG, Coleman AE, Creevy KE, Crowder K, Dunbar MD, Ernst HR, Fajt VR, Fitzpatrick AL, Garrison SJ, Herndon RS, Jaramilla D, Jeffery U, Jonlin EC, Kaeberlein M, Karlsson EK, Kerr KF, Levine JM, Ma J, McClelland RL, Prescott JO, Promislow DEL, Ruple A, Schwartz SM, Shrager S, Snyder-Mackler N, Tinkle AK, Tolbert MK, Urfer SR, Wilfond BS. Purpose, Partnership, and Possibilities: The Implementation of the Dog Aging Project Biobank. Biomark Insights 2022; 17:11772719221137217. [PMID: 36468152 PMCID: PMC9716607 DOI: 10.1177/11772719221137217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/18/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Biobanks have been supporting longitudinal prospective and retrospective studies by providing standardized services for the acquisition, transport, processing, storage, and distribution of high-quality biological material and associated data. Here, we describe how the Dog Aging Project (DAP), a large-scale longitudinal study of the domestic dog ( Canis familiaris) with translational applications for humans, developed a biobank of canine biospecimens and associated data. Design and methods: This was accomplished by working with the Cornell Veterinary Biobank, the first biobank in the world to receive accreditation to ISO 20387:2018—General Requirements for Biobanking. The biobank research team was involved in the early collection stages of the DAP, contributing to the development of appropriate workflows and processing fit-for-purpose biospecimens. In support of a dynamic strategy for real-time adjustment of processes, a pilot phase was implemented to develop, test, and optimize the biospecimen workflows, followed by an early phase of collection, processing, and banking of specimens from DAP participants. Results: During the pilot and early phases of collection, the DAP Biobank stored 164 aliquots of whole blood, 273 aliquots of peripheral blood mononuclear cells, 130 aliquots of plasma, and 70 aliquots of serum, and extracted high molecular weight genomic DNA suitable for whole-genome sequencing from 109 whole blood specimens. These specimens, along with their associated preanalytical data, have been made available for distribution to researchers. Conclusion: We discuss the challenges and opportunities encountered during the implementation of the DAP Biobank, along with novel strategies for promoting biobanking sustainability such as partnering with a DAP quality assurance manager and a DAP marketing and communication specialist and developing a pilot grant structure to fund small innovative research projects.
Collapse
Affiliation(s)
- Lara Mouttham
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Marta G Castelhano
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Joshua M Akey
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Brooke Benton
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Elhanan Borenstein
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- Santa Fe Institute, Santa Fe, NM, USA
| | - Marta G Castelhano
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Amanda E Coleman
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Kate E Creevy
- Department of Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Kyle Crowder
- Department of Sociology, University of Washington, Seattle, WA, USA
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, USA
| | - Matthew D Dunbar
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, USA
| | - Holley R Ernst
- Department of Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Virginia R Fajt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Annette L Fitzpatrick
- Department of Family Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Susan J Garrison
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Reba S Herndon
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Debra Jaramilla
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Unity Jeffery
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Erica C Jonlin
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Elinor K Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kathleen F Kerr
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jonathan M Levine
- Department of Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Jing Ma
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Jena O Prescott
- Department of Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Daniel EL Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Audrey Ruple
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Stephen M Schwartz
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sandi Shrager
- Collaborative Health Studies Coordinating Center, Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Noah Snyder-Mackler
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Amanda K Tinkle
- Department of Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - M Katherine Tolbert
- Department of Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Silvan R Urfer
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Benjamin S Wilfond
- Treuman Katz Center for Pediatric Bioethics, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, Division of Bioethics and Palliative Care, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|