1
|
Castiglioni S, Locatelli L, Cazzaniga A, Orecchio FM, Santaniello T, Piazzoni C, Bureau L, Borghi F, Milani P, Maier JA. Cluster-Assembled Zirconia Substrates Accelerate the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:801. [PMID: 36903679 PMCID: PMC10005756 DOI: 10.3390/nano13050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Due to their high mechanical strength and good biocompatibility, nanostructured zirconia surfaces (ns-ZrOx) are widely used for bio-applications. Through supersonic cluster beam deposition, we produced ZrOx films with controllable roughness at the nanoscale, mimicking the morphological and topographical properties of the extracellular matrix. We show that a 20 nm ns-ZrOx surface accelerates the osteogenic differentiation of human bone marrow-derived MSCs (bMSCs) by increasing the deposition of calcium in the extracellular matrix and upregulating some osteogenic differentiation markers. bMSCs seeded on 20 nm ns-ZrOx show randomly oriented actin fibers, changes in nuclear morphology, and a reduction in mitochondrial transmembrane potential when compared to the cells cultured on flat zirconia (flat-ZrO2) substrates and glass coverslips used as controls. Additionally, an increase in ROS, known to promote osteogenesis, was detected after 24 h of culture on 20 nm ns-ZrOx. All the modifications induced by the ns-ZrOx surface are rescued after the first hours of culture. We propose that ns-ZrOx-induced cytoskeletal remodeling transmits signals generated by the extracellular environment to the nucleus, with the consequent modulation of the expression of genes controlling cell fate.
Collapse
Affiliation(s)
- Sara Castiglioni
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy
| | - Laura Locatelli
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy
| | - Alessandra Cazzaniga
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy
| | - Francesca Maria Orecchio
- Department of Physics and Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.[M1]), University of Milan, Via Giovanni Celoria, 16, 20133 Milan, Italy
| | - Tommaso Santaniello
- Department of Physics and Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.[M1]), University of Milan, Via Giovanni Celoria, 16, 20133 Milan, Italy
| | - Claudio Piazzoni
- Department of Physics and Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.[M1]), University of Milan, Via Giovanni Celoria, 16, 20133 Milan, Italy
| | - Lionel Bureau
- Laboratoire Interdisciplinaire de Physique (LIPhy), Université Grenoble Alpes, CNRS, F-38000 Grenoble, France
| | - Francesca Borghi
- Department of Physics and Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.[M1]), University of Milan, Via Giovanni Celoria, 16, 20133 Milan, Italy
| | - Paolo Milani
- Department of Physics and Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.[M1]), University of Milan, Via Giovanni Celoria, 16, 20133 Milan, Italy
| | - Jeanette A. Maier
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy
| |
Collapse
|
2
|
Tassinari R, Cavallini C, Olivi E, Taglioli V, Zannini C, Ventura C. Unveiling the morphogenetic code: A new path at the intersection of physical energies and chemical signaling. World J Stem Cells 2021; 13:1382-1393. [PMID: 34786150 PMCID: PMC8567452 DOI: 10.4252/wjsc.v13.i10.1382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/16/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
In this editorial, we discuss the remarkable role of physical energies in the control of cell signaling networks and in the specification of the architectural plan of both somatic and stem cells. In particular, we focus on the biological relevance of bioelectricity in the pattern control that orchestrates both developmental and regenerative pathways. To this end, the narrative starts from the dawn of the first studies on animal electricity, reconsidering the pioneer work of Harold Saxton Burr in the light of the current achievements. We finally discuss the most recent evidence showing that bioelectric signaling is an essential component of the informational processes that control pattern specification during embryogenesis, regeneration, or even malignant transformation. We conclude that there is now mounting evidence for the existence of a Morphogenetic Code, and that deciphering this code may lead to unprecedented opportunities for the development of novel paradigms of cure in regenerative and precision medicine.
Collapse
Affiliation(s)
- Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Elena Olivi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Valentina Taglioli
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| |
Collapse
|
3
|
Kamaldinov T, Hahn MS. Dual Bioelectrical Assessment of Human Mesenchymal Stem Cells Using Plasma and Mitochondrial Membrane Potentiometric Probes. Bioelectricity 2020; 2:238-250. [PMID: 34476356 DOI: 10.1089/bioe.2020.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Bioelectrical properties are known to impact stem cell fate, state, and function. However, assays that measure bioelectrical properties are generally limited to the plasma membrane potential. In this study, we propose an assay to simultaneously assess cell plasma membrane and mitochondrial membrane potentials. Materials and Methods: Mesenchymal stem cell (MSC) plasma and mitochondrial membrane potentials were measured using flow cytometry and a combination of tetramethylrhodamine, methyl ester (TMRM), and bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC) dyes. We investigated the shifts in the bioelectrical phenotype of MSCs due to extended culture in vitro, activation with interferon-gamma (IFN-γ), and aggregate conditions. Results: MSCs subjected to extended culture in vitro acquired plasma and mitochondrial membrane potentials consistent with a hyperpolarized bioelectrical phenotype. Activation with IFN-γ shifted MSCs toward a state associated with increased levels of both DiBAC and TMRM. MSCs in aggregate conditions were associated with a decrease in TMRM levels, indicating mitochondrial depolarization. Conclusions: Our proposed assay described distinct MSC bioelectrical transitions due to extended in vitro culture, exposure to an inflammatory cytokine, and culture under aggregate conditions. Overall, our assay enables a more complete characterization of MSC bioelectrical properties within a single experiment, and its relative simplicity enables researchers to apply it in variety of settings.
Collapse
Affiliation(s)
- Timothy Kamaldinov
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|