1
|
Ishihara M, Nakamura S, Sato Y, Takayama T, Fukuda K, Fujita M, Murakami K, Yokoe H. Heparinoid Complex-Based Heparin-Binding Cytokines and Cell Delivery Carriers. Molecules 2019; 24:molecules24244630. [PMID: 31861225 PMCID: PMC6943580 DOI: 10.3390/molecules24244630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Heparinoid is the generic term that is used for heparin, heparan sulfate (HS), and heparin-like molecules of animal or plant origin and synthetic derivatives of sulfated polysaccharides. Various biological activities of heparin/HS are attributed to their specific interaction and regulation with various heparin-binding cytokines, antithrombin (AT), and extracellular matrix (ECM) biomolecules. Specific domains with distinct saccharide sequences in heparin/HS mediate these interactions are mediated and require different highly sulfated saccharide sequences with different combinations of sulfated groups. Multivalent and cluster effects of the specific sulfated sequences in heparinoids are also important factors that control their interactions and biological activities. This review provides an overview of heparinoid-based biomaterials that offer novel means of engineering of various heparin-binding cytokine-delivery systems for biomedical applications and it focuses on our original studies on non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) and polyelectrolyte complex-nano/microparticles (N/MPs), in addition to heparin-coating devices.
Collapse
Affiliation(s)
- Masayuki Ishihara
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
- Correspondence: ; Tel.: +81-429-95-1211 (ext. 2610)
| | - Shingo Nakamura
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Yoko Sato
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Tomohiro Takayama
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| | - Koichi Fukuda
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Masanori Fujita
- Division of Environmental Medicine, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-1324, Japan;
| | - Kaoru Murakami
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| |
Collapse
|
2
|
Li G, Liu X, Du Q, Gao M, An J. Three dimensional de novo micro bone marrow and its versatile application in drug screening and regenerative medicine. Exp Biol Med (Maywood) 2015; 240:1029-38. [PMID: 26283705 DOI: 10.1177/1535370215594583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The finding that bone marrow hosts several types of multipotent stem cell has prompted extensive research aimed at regenerating organs and building models to elucidate the mechanisms of diseases. Conventional research depends on the use of two-dimensional (2D) bone marrow systems, which imposes several obstacles. The development of 3D bone marrow systems with appropriate molecules and materials however, is now showing promising results. In this review, we discuss the advantages of 3D bone marrow systems over 2D systems and then point out various factors that can enhance the 3D systems. The intensive research on 3D bone marrow systems has revealed multiple important clinical applications including disease modeling, drug screening, regenerative medicine, etc. We also discuss some possible future directions in the 3D bone marrow research field.
Collapse
Affiliation(s)
- Guanqun Li
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| | - Xujun Liu
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| | - Qian Du
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| | - Mei Gao
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA SUNY Upstate Cancer Research Institute, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| | - Jing An
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA SUNY Upstate Cancer Research Institute, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| |
Collapse
|
3
|
In Vitro Behavior of Human Adipose Tissue-Derived Stem Cells on Poly(ε-caprolactone) Film for Bone Tissue Engineering Applications. BIOMED RESEARCH INTERNATIONAL 2015; 2015:323571. [PMID: 26558266 PMCID: PMC4617699 DOI: 10.1155/2015/323571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/10/2015] [Indexed: 12/12/2022]
Abstract
Bone tissue engineering is an emerging field, representing one of the most exciting challenges for scientists and clinicians. The possibility of combining mesenchymal stem cells and scaffolds to create engineered tissues has brought attention to a large variety of biomaterials in combination with osteoprogenitor cells able to promote and regenerate bone tissue. Human adipose tissue is officially recognized as an easily accessible source of mesenchymal stem cells (AMSCs), a significant factor for use in tissue regenerative medicine. In this study, we analyze the behavior of a clonal finite cell line derived from human adipose tissue seeded on poly(ε-caprolactone) (PCL) film, prepared by solvent casting. PCL polymer is chosen for its good biocompatibility, biodegradability, and mechanical properties. We observe that AMSCs are able to adhere to the biomaterial and remain viable for the entire experimental period. Moreover, we show that the proliferation process and osteogenic activity of AMSCs are maintained on the biofilm, demonstrating that the selected biomaterial ensures cell colonization and the development of an extracellular mineralized matrix. The results of this study highlight that AMSCs and PCL film can be used as a suitable model to support regeneration of new bone for future tissue engineering strategies.
Collapse
|
4
|
Morita Y, Karja NWK, Do LTK, Tanihara F, Taniguchi M, Otoi T. Formation of an Antral Follicle-Like Structure by Bovine Cumulus-Oocyte Complexes Embedded with Fragmin/Protamine Microparticles. Anim Biotechnol 2015; 26:273-5. [PMID: 26158458 DOI: 10.1080/10495398.2015.1015681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fragmin/protamine microparticles (F/P MPs) approximately 0.5-1 µM in diameter were prepared by the simple mixing of fragmin with protamine. This study investigated the effects of F/P MP-containing collagen gels as a hormone carrier on the formation of antral follicle-like structures and on the development of growing bovine oocytes. The supplementation of F/P MPs in collagen gels contributed to the beneficial effects of follicle stimulating hormone (FSH) on the formation and size of antral follicle-like structures. The F/P MPs may serve as potential hormone carriers for the growth of cultured bovine oocytes from early antral follicles.
Collapse
Affiliation(s)
- Yasuhiro Morita
- a Laboratory of Animal Reproduction, The United Graduate School of Veterinary Science , Yamaguchi University , Yamaguchi , Japan
| | | | | | | | | | | |
Collapse
|
5
|
Ishihara M, Kishimoto S, Takikawa M, Hattori H, Nakamura S, Shimizu M. Biomedical application of low molecular weight heparin/protamine nano/micro particles as cell- and growth factor-carriers and coating matrix. Int J Mol Sci 2015; 16:11785-803. [PMID: 26006248 PMCID: PMC4463730 DOI: 10.3390/ijms160511785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/07/2015] [Accepted: 05/15/2015] [Indexed: 12/22/2022] Open
Abstract
Low molecular weight heparin (LMWH)/protamine (P) nano/micro particles (N/MPs) (LMWH/P N/MPs) were applied as carriers for heparin-binding growth factors (GFs) and for adhesive cells including adipose-derived stromal cells (ADSCs) and bone marrow-derived mesenchymal stem cells (BMSCs). A mixture of LMWH and P yields a dispersion of N/MPs (100 nm–3 μm in diameter). LMWH/P N/MPs can be immobilized onto cell surfaces or extracellular matrix, control the release, activate GFs and protect various GFs. Furthermore, LMWH/P N/MPs can also bind to adhesive cell surfaces, inducing cells and LMWH/P N/MPs-aggregate formation. Those aggregates substantially promoted cellular viability, and induced vascularization and fibrous tissue formation in vivo. The LMWH/P N/MPs, in combination with ADSCs or BMSCs, are effective cell-carriers and are potential promising novel therapeutic agents for inducing vascularization and fibrous tissue formation in ischemic disease by transplantation of the ADSCs and LMWH/P N/MPs-aggregates. LMWH/P N/MPs can also bind to tissue culture plates and adsorb exogenous GFs or GFs from those cells. The LMWH/P N/MPs-coated matrix in the presence of GFs may provide novel biomaterials that can control cellular activity such as growth and differentiation. Furthermore, three-dimensional (3D) cultures of cells including ADSCs and BMSCs using plasma-medium gel with LMWH/P N/MPs exhibited efficient cell proliferation. Thus, LMWH/P N/MPs are an adequate carrier both for GFs and for stromal cells such as ADSCs and BMSCs, and are a functional coating matrix for their cultures.
Collapse
Affiliation(s)
- Masayuki Ishihara
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan.
| | - Satoko Kishimoto
- Research Support Center, Dokkyo Medical University, Tochigi 321-0293, Japan.
| | - Makoto Takikawa
- Department of Medical Engineering, National Defense Medical College, Saitama 359-8513, Japan.
| | - Hidemi Hattori
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan.
| | - Shingo Nakamura
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan.
| | - Masafumi Shimizu
- Department of Surgery, Tokorozawa Meisei Hospital, Saitama 359-1145, Japan.
| |
Collapse
|
6
|
Effective wound healing in streptozotocin-induced diabetic rats by adipose-derived stromal cell transplantation in plasma-gel containing fragmin/protamine microparticles. Ann Plast Surg 2014; 72:113-20. [PMID: 24317245 DOI: 10.1097/sap.0000000000000014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We investigated the effectiveness of the application of inbred adipose-derived stromal cells (IR-ASCs) in high inbred rat plasma (IRP) (6%)-Dulbecco modified Eagle medium (DMEM) gel with fragmin/protamine microparticles (F/P MPs) (IR-ASCs + IRP-DMEM gel + F/P MPs) on wound healing in streptozotocin-induced diabetic rats. F/P MPs have previously been used as a cell carrier for IR-ASCs in inbred Fisher 344 rats and for preservation and controlled release of various cytokines in IRP-DMEM gel. We applied IR-ASCs + IRP-DMEM gel + F/P MPs to full-thickness skin excisions on the backs of the diabetic rats. The statistical significance of wound closure was evaluated on postwounding days 3, 7, 10, and 14, and the skin area surrounding the wound was removed for histological examination on days 7 and 14. The wound closure rate and histological examination of wounds treated with IR-ASCs + IRP-DMEM gel + F/P MPs demonstrated significantly advanced epithelialization, capillary formation, and granulation tissue formation. When DiI-labeled IR-ASCs + IRP-DMEM gel + F/P MPs were applied to full-thickness skin wounds on the backs of the diabetic rats, histological observation at 2 weeks showed appearances of both DiI-labeled granulation tissue and CD31-immunostained microvessels in the transplant areas. A portion of the transplanted IR-ASCs + IRP-DMEM gel + F/P MPs had been taken up into the granulation tissues to promote wound healing. Thus, IR-ASCs + IRP-DMEM gel + F/P MPs were effective for repairing healing-impaired wounds such as those arising in the diabetic rats.
Collapse
|
7
|
Romagnoli C, Brandi ML. Adipose mesenchymal stem cells in the field of bone tissue engineering. World J Stem Cells 2014; 6:144-152. [PMID: 24772241 PMCID: PMC3999772 DOI: 10.4252/wjsc.v6.i2.144] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/19/2013] [Accepted: 03/04/2014] [Indexed: 02/06/2023] Open
Abstract
Bone tissue engineering represents one of the most challenging emergent fields for scientists and clinicians. Current failures of autografts and allografts in many pathological conditions have prompted researchers to find new biomaterials able to promote bone repair or regeneration with specific characteristics of biocompatibility, biodegradability and osteoinductivity. Recent advancements for tissue regeneration in bone defects have occurred by following the diamond concept and combining the use of growth factors and mesenchymal stem cells (MSCs). In particular, a more abundant and easily accessible source of MSCs was recently discovered in adipose tissue. These adipose stem cells (ASCs) can be obtained in large quantities with little donor site morbidity or patient discomfort, in contrast to the invasive and painful isolation of bone marrow MSCs. The osteogenic potential of ASCs on scaffolds has been examined in cell cultures and animal models, with only a few cases reporting the use of ASCs for successful reconstruction or accelerated healing of defects of the skull and jaw in patients. Although these reports extend our limited knowledge concerning the use of ASCs for osseous tissue repair and regeneration, the lack of standardization in applied techniques makes the comparison between studies difficult. Additional clinical trials are needed to assess ASC therapy and address potential ethical and safety concerns, which must be resolved to permit application in regenerative medicine.
Collapse
|
8
|
Sumi Y, Ishihara M, Kishimoto S, Takikawa M, Doumoto T, Azuma R, Nakamura S, Hattori H, Fujita M, Kiyosawa T. Transplantation of inbred adipose-derived stromal cells in rats with plasma gel containing fragmin/protamine microparticles and FGF-2. J Biomed Mater Res B Appl Biomater 2013; 101:784-91. [PMID: 23359413 DOI: 10.1002/jbm.b.32882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/13/2012] [Accepted: 11/29/2012] [Indexed: 12/16/2022]
Abstract
Fragmin/protamine microparticles (F/P MPs) have been used as a cell carrier for adipose-derived stromal cells (IR-ASCs) in inbred male Fisher 344 rats, and for preservation and controlled-release of fibroblast growth factor (FGF)-2 and various cytokines in inbred rat plasma (IRP)-DMEM (Dulbecco's modified Eagle's medium) gel. In this study, we investigated the capability of an IRP-DMEM gel containing F/P MPs and/or FGF-2, as a three-dimensional (3D)-culture, to expand IR-ASCs. We found that IR-ASCs grow faster under 3D-culture conditions in low IRP (3%)-DMEM gel containing F/P MPs and FGF-2 without any animal serum than those under 2D-culture in low inbred rat serum (3%)-DMEM with F/P MPs and FGF-2. About 0.3 mL of IR-ASCs (about 4,000,000 cells mL⁻¹) grown in IRP (6%)-DMEM gel containing F/P MPs and FGF-2 disappeared 8 days after subcutaneous injection in rats, suggesting that they are rapidly biodegradable. The number of large (diameter ≥200 μm or containing ≥100 erythrocytes), medium (diameter = 20-200 μm or containing 10-100 erythrocytes) and small (diameter ≤20 μm or containing 1-10 erythrocytes) capillaries after injection with IR-ASCs in an IRP-DMEM gel containing both F/P MPs and FGF-2, as well as the thickness of tissue granulation per microphotograph at the injected site, was significantly higher than those after injection with IR-ASCs in an IRP-DMEM gel containing either FGF-2 or F/P MPs. Thus, IRP-DMEM gel containing F/P MPs and FGF-2 are useful and safe IR-ASC carriers that facilitate cell proliferation, vascularization, and tissue granulation locally at injection sites.
Collapse
Affiliation(s)
- Yuki Sumi
- Department of Plastic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|