1
|
Argyropoulou MI, Xydis VG, Astrakas LG. Functional connectivity of the pediatric brain. Neuroradiology 2024; 66:2071-2082. [PMID: 39230715 DOI: 10.1007/s00234-024-03453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE This review highlights the importance of functional connectivity in pediatric neuroscience, focusing on its role in understanding neurodevelopment and potential applications in clinical practice. It discusses various techniques for analyzing brain connectivity and their implications for clinical interventions in neurodevelopmental disorders. METHODS The principles and applications of independent component analysis and seed-based connectivity analysis in pediatric brain studies are outlined. Additionally, the use of graph analysis to enhance understanding of network organization and topology is reviewed, providing a comprehensive overview of connectivity methods across developmental stages, from fetuses to adolescents. RESULTS Findings from the reviewed studies reveal that functional connectivity research has uncovered significant insights into the early formation of brain circuits in fetuses and neonates, particularly the prenatal origins of cognitive and sensory systems. Longitudinal research across childhood and adolescence demonstrates dynamic changes in brain connectivity, identifying critical periods of development and maturation that are essential for understanding neurodevelopmental trajectories and disorders. CONCLUSION Functional connectivity methods are crucial for advancing pediatric neuroscience. Techniques such as independent component analysis, seed-based connectivity analysis, and graph analysis offer valuable perspectives on brain development, creating new opportunities for early diagnosis and targeted interventions in neurodevelopmental disorders, thereby paving the way for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Maria I Argyropoulou
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, Ioannina, 45110, Greece.
| | - Vasileios G Xydis
- Department of Radiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, Ioannina, 45110, Greece
| | - Loukas G Astrakas
- Medical Physics Laboratory, Faculty of Medicine, School of Health Sciences, University of Ioannina, P.O. Box 1186, Ioannina, 45110, Greece
| |
Collapse
|
2
|
Wein S, Riebel M, Seidel P, Brunner LM, Wagner V, Nothdurfter C, Rupprecht R, Schwarzbach JV. Local and global effects of sedation in resting-state fMRI: a randomized, placebo-controlled comparison between etifoxine and alprazolam. Neuropsychopharmacology 2024; 49:1738-1748. [PMID: 38822128 PMCID: PMC11399242 DOI: 10.1038/s41386-024-01884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024]
Abstract
TSPO ligands are promising alternatives to benzodiazepines in the treatment of anxiety, as they display less pronounced side effects such as sedation, cognitive impairment, tolerance development and abuse potential. In a randomized double-blind repeated-measures study we compare a benzodiazepine (alprazolam) to a TSPO ligand (etifoxine) by assessing side effects and acquiring resting-state fMRI data from 34 healthy participants after 5 days of taking alprazolam, etifoxine or a placebo. To study the effects of the pharmacological interventions in fMRI in detail and across different scales, we combine in our study complementary analysis strategies related to whole-brain functional network connectivity, local connectivity analysis expressed in regional homogeneity, fluctuations in low-frequency BOLD amplitudes and coherency of independent resting-state networks. Participants reported considerable adverse effects such as fatigue, sleepiness and concentration impairments, related to the administration of alprazolam compared to placebo. In resting-state fMRI we found a significant decrease in functional connection density, network efficiency and a decrease in the networks rich-club coefficient related to alprazolam. While observing a general decrease in regional homogeneity in high-level brain networks in the alprazolam condition, we simultaneously could detect an increase in regional homogeneity and resting-state network coherence in low-level sensory regions. Further we found a general increase in the low-frequency compartment of the BOLD signal. In the etifoxine condition, participants did not report any significant side effects compared to the placebo, and we did not observe any corresponding modulations in our fMRI metrics. Our results are consistent with the idea that sedation globally disconnects low-level functional networks, but simultaneously increases their within-connectivity. Further, our results point towards the potential of TSPO ligands in the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Simon Wein
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Marco Riebel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Philipp Seidel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Lisa-Marie Brunner
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Viola Wagner
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Jens V Schwarzbach
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany.
| |
Collapse
|
3
|
Xu S, Li M, Yang C, Fang X, Ye M, Wu Y, Yang B, Huang W, Li P, Ma X, Fu S, Yin Y, Tian J, Gan Y, Jiang G. Abnormal Degree Centrality in Children with Low-Function Autism Spectrum Disorders: A Sleeping-State Functional Magnetic Resonance Imaging Study. Neuropsychiatr Dis Treat 2022; 18:1363-1374. [PMID: 35818374 PMCID: PMC9270980 DOI: 10.2147/ndt.s367104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE This study used the graph-theory approach, degree centrality (DC) to analyze whole-brain functional networks at the voxel level in children with ASD, and investigated whether DC changes were correlated with any clinical variables in ASD children. METHODS The current study included 86 children with ASD and 54 matched healthy subjects Aged 2-5.5 years. Next, chloral hydrate induced sleeping-state functional magnetic resonance imaging (ss-fMRI) datasets were acquired from these ASD and healthy subjects. For a given voxel, the DC was calculated by calculating the number of functional connections with significantly positive correlations at the individual level. Group differences were tested using two-sample t-tests (p < 0.01, AlphaSim corrected). Finally, relationships between abnormal DCs and clinical variables were investigated via Pearson's correlation analysis. RESULTS Children with ASD exhibited low DC values in the right middle frontal gyrus (MFG) (p < 0.01, AlphaSim corrected). Furthermore, significantly negative correlations were established between the decreased average DC values within the right MFG in ASD children and the total ABC scores, as well as with two ABC subscales measuring highly relevant impairments in ASD (ie, stereotypes and object-use behaviors and difficulties in language). CONCLUSION Taken together, the results of our ss-fMRI study suggest that abnormal DC may represent an important contribution to elucidation of the neuropathophysiological mechanisms of preschoolers with ASD.
Collapse
Affiliation(s)
- Shoujun Xu
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Meng Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Chunlan Yang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Xiangling Fang
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Miaoting Ye
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Yunfan Wu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Binrang Yang
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Wenxian Huang
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Peng Li
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Xiaofen Ma
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Junzhang Tian
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yungen Gan
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| |
Collapse
|
4
|
Jiang M, Wen Z, Long L, Wong CW, Ye N, Zee C, Chen BT. Assessing Cerebral White Matter Microstructure in Children With Congenital Sensorineural Hearing Loss: A Tract-Based Spatial Statistics Study. Front Neurosci 2019; 13:597. [PMID: 31293368 PMCID: PMC6598398 DOI: 10.3389/fnins.2019.00597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
Objectives To assess the microstructural properties of cerebral white matter in children with congenital sensorineural hearing loss (CSNHL). Methods Children (>4 years of age) with profound CSNHL and healthy controls with normal hearing (the control group) were enrolled and underwent brain magnetic resonance imaging (MRI) scans with diffusion tensor imaging (DTI). DTI parameters including fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were obtained from a whole-brain tract-based spatial statistics analysis and were compared between the two groups. In addition, a region of interest (ROI) approach focusing on auditory cortex, i.e., Heschl’s gyrus, using visual cortex, i.e., forceps major as an internal control, was performed. Correlations between mean DTI values and age were obtained with the ROI method. Results The study cohort consisted of 23 children with CSHNL (11 boys and 12 girls; mean age ± SD: 7.21 ± 2.67 years; range: 4.1–13.5 years) and 18 children in the control group (11 boys and 7 girls; mean age ± SD: 10.86 ± 3.56 years; range: 4.5–15.3 years). We found the axial diffusivity values being significantly greater in the left anterior thalamic radiation, right corticospinal tract, and corpus callosum in the CSHNL group than in the control group (p < 0.05). Significantly higher radial diffusivity values in the white matter tracts were noted in the CSHNL group as compared to the control group (p < 0.05). The fractional anisotropy values in the Heschl’s gyrus in the CSNHL group were lower compared to the control group (p = 0.0015). There was significant negative correlation between the mean fractional anisotropy values in Heschl’s gyrus and age in the CSNHL group < 7 years of age (r = −0.59, p = 0.004). Conclusion Our study showed higher axial and radial diffusivities in the children affected by CNHNL as compared to the hearing children. We also found lower fractional anisotropy values in the Heschl’s gyrus in the CSNHL group. Furthermore, we identified negative correlation between the fractional anisotropy values and age up to 7 years in the children born deaf. Our study findings suggest that myelination and axonal structure may be affected due to acoustic deprivation. This information may help to monitor hearing rehabilitation in the deaf children.
Collapse
Affiliation(s)
- Muliang Jiang
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States
| | - Zuguang Wen
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liling Long
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chi Wah Wong
- Center for Informatics, City of Hope National Medical Center, Duarte, CA, United States
| | - Ningrong Ye
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States
| | - Chishing Zee
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
5
|
Kaku SM, Jayashankar A, Girimaji SC, Bansal S, Gohel S, Bharath RD, Srinath S. Early childhood network alterations in severe autism. Asian J Psychiatr 2019; 39:114-119. [PMID: 30610990 DOI: 10.1016/j.ajp.2018.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/28/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To examine the differences in whole brain topology and connectivity in 17 children of the ages 3-8 years across severity of ASD, we performed resting state fMRI using a 3T MRI scanner and graph theoretical analysis of networks. METHOD Patients were partitioned into two cohorts based on the severity of ASD, determined using the Childhood Autism Rating Scale (CARS) scores (Mild, 30-36; Severe, 37+). Standard preprocessing pipeline was used, followed by independent component analysis (ICA) to identify regions of interest (ROIs) to construct subject-specific Z-correlation matrices representing the whole brain network. Following which, graph theory measures were calculated in the range of sparsity 6%-35% and statistically analyzed, and corrected for significance (FDR corrected, p < 0.05). Regional clustering coefficient that revealed significant between-group (mild vs. severe) differences were correlated against clinical scores (CARS). RESULTS Children with severe ASD revealed significantly increased clustering coefficient and small-worldness compared to those with mild or moderate ASD. Region of interest analysis revealed altered clustering in the Heschl's gyrus that significantly correlated with CARS scores. CONCLUSION The findings from the current study provide early stage evidence of aberrant brain connectivity appearing in severe ASD, prior to the effect of environmental bias and pruning mechanisms. The clustering of the Heschl's gyrus correlated to the severity of ASD symptoms and agrees with current literature on ASD-associated cortical changes, reflecting early changes to language processing regions.
Collapse
Affiliation(s)
- Sowmyashree Mayur Kaku
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, Karnataka, India
| | - Aditya Jayashankar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, Karnataka, India
| | - Satish Chandra Girimaji
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, Karnataka, India
| | - Sonia Bansal
- Department of Neuroanaesthesia and Neuro-Critical Care, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, Karnataka, India
| | - Suril Gohel
- Department of Health Informatics, School of Health Professions, Rutgers University, Newark, NJ, USA
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, Karnataka, India.
| | - Shoba Srinath
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, Karnataka, India
| |
Collapse
|
6
|
Chen H, Wang J, Uddin LQ, Wang X, Guo X, Lu F, Duan X, Wu L, Chen H. Aberrant functional connectivity of neural circuits associated with social and sensorimotor deficits in young children with autism spectrum disorder. Autism Res 2018; 11:1643-1652. [PMID: 30475453 DOI: 10.1002/aur.2029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/07/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by atypical functional integration of brain regions. The vast majority of neuroimaging studies of ASD have focused on older children, adolescents, and adults with the disorder. Very little work has explored whole-brain functional connectivity of young children with ASD. Here, we collected resting-state functional magnetic resonance imaging data from 58 young children (mean age 4.98 years; 29 with ASD; 29 matched healthy controls [HC]). All children were under sedation during scanning. A functional "connectedness" method was first used to seek for brain regions showing atypical functional connectivity (FC) in children with ASD. Then, a recurrent-seek strategy was applied to reveal atypical FC circuits in ASD children. FC matrices between regions-of-interest (ROIs) were compared between ASD and HC. Finally, a support vector regression (SVR) method was used to assess the relationship between the FC circuits and ASD symptom severity. Two atypical FC circuits comprising 23 ROIs in ASD were revealed: one predominantly comprised brain regions involved with social cognition showing under-connectivity in ASD; the other predominantly comprised sensory-motor and visual brain regions showing over-connectivity in ASD. The SVR analysis showed that the two FC circuits were separately related to social deficits and restricted behavior scores. These findings indicate disrupted FC of neural circuits involved in the social and sensorimotor processes in young children with ASD. The finding of the atypical FC patterns in young children with ASD underscores the utility of studying younger children with the disorder, and highlights nuanced patterns of brain connectivity underlying behavior closer to disorder onset. Autism Research 2018, 11: 1643-1652. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Autism spectrum disorder (ASD) is an early-onset neurodevelopmental disorder. Understanding brain functional alterations at early ages is important for understanding biological mechanisms of ASD. Here, we found two atypical brain functional circuits in young children with ASD that were related to social and sensorimotor function. These results show how atypical patterns of brain functional connectivity in young children with of ASD may underlie core symptoms of the disorder.
Collapse
Affiliation(s)
- Heng Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, From University of Electronic Science and Technology of China, Chengdu, China.,School of life Science and technology, center for information in medicine, University of Electronic Science and Technology of China, Chengdu, China.,School of Medicine, Guizhou University, Guiyang, China
| | - Jia Wang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, China
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, Florida
| | - Xiaomin Wang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, China
| | - Xiaonan Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, From University of Electronic Science and Technology of China, Chengdu, China.,School of life Science and technology, center for information in medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, From University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Mental Health Center, Chengdu, China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, From University of Electronic Science and Technology of China, Chengdu, China.,School of life Science and technology, center for information in medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, From University of Electronic Science and Technology of China, Chengdu, China.,School of life Science and technology, center for information in medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Network Properties in Transitions of Consciousness during Propofol-induced Sedation. Sci Rep 2017; 7:16791. [PMID: 29196672 PMCID: PMC5711919 DOI: 10.1038/s41598-017-15082-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/20/2017] [Indexed: 01/10/2023] Open
Abstract
Reliable electroencephalography (EEG) signatures of transitions between consciousness and unconsciousness under anaesthesia have not yet been identified. Herein we examined network changes using graph theoretical analysis of high-density EEG during patient-titrated propofol-induced sedation. Responsiveness was used as a surrogate for consciousness. We divided the data into five states: baseline, transition into unresponsiveness, unresponsiveness, transition into responsiveness, and recovery. Power spectral analysis showed that delta power increased from responsiveness to unresponsiveness. In unresponsiveness, delta waves propagated from frontal to parietal regions as a traveling wave. Local increases in delta connectivity were evident in parietal but not frontal regions. Graph theory analysis showed that increased local efficiency could differentiate the levels of responsiveness. Interestingly, during transitions of responsive states, increased beta connectivity was noted relative to consciousness and unconsciousness, again with increased local efficiency. Abrupt network changes are evident in the transitions in responsiveness, with increased beta band power/connectivity marking transitions between responsive states, while the delta power/connectivity changes were consistent with the fading of consciousness using its surrogate responsiveness. These results provide novel insights into the neural correlates of these behavioural transitions and EEG signatures for monitoring the levels of consciousness under sedation.
Collapse
|
8
|
Khalili-Mahani N, Rombouts SARB, van Osch MJP, Duff EP, Carbonell F, Nickerson LD, Becerra L, Dahan A, Evans AC, Soucy JP, Wise R, Zijdenbos AP, van Gerven JM. Biomarkers, designs, and interpretations of resting-state fMRI in translational pharmacological research: A review of state-of-the-Art, challenges, and opportunities for studying brain chemistry. Hum Brain Mapp 2017; 38:2276-2325. [PMID: 28145075 DOI: 10.1002/hbm.23516] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 11/21/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
A decade of research and development in resting-state functional MRI (RSfMRI) has opened new translational and clinical research frontiers. This review aims to bridge between technical and clinical researchers who seek reliable neuroimaging biomarkers for studying drug interactions with the brain. About 85 pharma-RSfMRI studies using BOLD signal (75% of all) or arterial spin labeling (ASL) were surveyed to investigate the acute effects of psychoactive drugs. Experimental designs and objectives include drug fingerprinting dose-response evaluation, biomarker validation and calibration, and translational studies. Common biomarkers in these studies include functional connectivity, graph metrics, cerebral blood flow and the amplitude and spectrum of BOLD fluctuations. Overall, RSfMRI-derived biomarkers seem to be sensitive to spatiotemporal dynamics of drug interactions with the brain. However, drugs cause both central and peripheral effects, thus exacerbate difficulties related to biological confounds, structured noise from motion and physiological confounds, as well as modeling and inference testing. Currently, these issues are not well explored, and heterogeneities in experimental design, data acquisition and preprocessing make comparative or meta-analysis of existing reports impossible. A unifying collaborative framework for data-sharing and data-mining is thus necessary for investigating the commonalities and differences in biomarker sensitivity and specificity, and establishing guidelines. Multimodal datasets including sham-placebo or active control sessions and repeated measurements of various psychometric, physiological, metabolic and neuroimaging phenotypes are essential for pharmacokinetic/pharmacodynamic modeling and interpretation of the findings. We provide a list of basic minimum and advanced options that can be considered in design and analyses of future pharma-RSfMRI studies. Hum Brain Mapp 38:2276-2325, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Najmeh Khalili-Mahani
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,PERFORM Centre, Concordia University, Montreal, Canada
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.,Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | | | - Eugene P Duff
- Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.,Oxford Centre for Functional MRI of the Brain, Oxford University, Oxford, United Kingdom
| | | | - Lisa D Nickerson
- McLean Hospital, Belmont, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Lino Becerra
- Center for Pain and the Brain, Harvard Medical School & Boston Children's Hospital, Boston, Massachusetts
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jean-Paul Soucy
- PERFORM Centre, Concordia University, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Richard Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Alex P Zijdenbos
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,Biospective Inc, Montreal, Quebec, Canada
| | - Joop M van Gerven
- Centre for Human Drug Research, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|