1
|
Yu LQ, Ma H, Cao LY, Zhou YL. Noninvasive Evaluation of Acupuncture-Induced Cortical Plasticity in Advanced Rehabilitation of Facial Paralysis. J Craniofac Surg 2024; 35:2015-2020. [PMID: 39178417 DOI: 10.1097/scs.0000000000010544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/13/2024] [Indexed: 08/25/2024] Open
Abstract
OBJECTIVE Facial paralysis (FP), which resulted from head and neck cancer resection, significantly impacts patients' quality of life. Traditional assessments rely on subjective evaluations and electromyography, whereas functional magnetic resonance imaging offers a noninvasive alternative for enhanced rehabilitation. Acupuncture has shown promise in promoting cerebral cortex reorganization, yet the precise relationship between acupuncture-induced structural and functional changes remains unclear, necessitating further investigation into therapeutic mechanisms. METHODS Fifty-five patients afflicted with FP underwent evaluations using voxel-mirrored homotopic connectivity (VMHC) and tract-based spatial statistics and were divided into the acupuncture intervention group (n = 35) and pseudo intervention group (n = 20). Comparative analyses of metrics pre and postintervention were conducted to delineate therapy-induced modifications in acupuncture intervention. The postacupuncture effect between groups to verify the necessity of accurate positioning for the rehabilitation of FP. RESULTS Patients with FP showed deficits in VMHC in regions of the postcentral, precentral, and parietal areas. Corpus callosum and internal capsule showed significantly increased fractional anisotropy of the white matter skeleton in tract-based spatial statistics after treatment. Comparison postintervention results between groups exhibited deficits in VMHC and increased fractional anisotropy in regions of the corpus callosum in the acupuncture intervention group. CONCLUSIONS Early acupuncture intervention may suppress cortical hyperactivation and restore interhemispheric inhibition across the corpus callosum to inhibit maladaptive structural plasticity. Precise acupoint localization is crucial for effective therapy, highlighting the potential of postacupuncture cortical space data for refining therapeutic strategies.
Collapse
Affiliation(s)
- Li-Qing Yu
- Department of Acupuncture, Shanghai Changning Tianshan Traditional Chinese Medicine Hospital
| | - Hao Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lian-Ying Cao
- Department of Acupuncture, Shanghai Changning Tianshan Traditional Chinese Medicine Hospital
| | - Yu-Lu Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Sparling T, Iyer L, Pasquina P, Petrus E. Cortical Reorganization after Limb Loss: Bridging the Gap between Basic Science and Clinical Recovery. J Neurosci 2024; 44:e1051232024. [PMID: 38171645 PMCID: PMC10851691 DOI: 10.1523/jneurosci.1051-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the increasing incidence and prevalence of amputation across the globe, individuals with acquired limb loss continue to struggle with functional recovery and chronic pain. A more complete understanding of the motor and sensory remodeling of the peripheral and central nervous system that occurs postamputation may help advance clinical interventions to improve the quality of life for individuals with acquired limb loss. The purpose of this article is to first provide background clinical context on individuals with acquired limb loss and then to provide a comprehensive review of the known motor and sensory neural adaptations from both animal models and human clinical trials. Finally, the article bridges the gap between basic science researchers and clinicians that treat individuals with limb loss by explaining how current clinical treatments may restore function and modulate phantom limb pain using the underlying neural adaptations described above. This review should encourage the further development of novel treatments with known neurological targets to improve the recovery of individuals postamputation.Significance Statement In the United States, 1.6 million people live with limb loss; this number is expected to more than double by 2050. Improved surgical procedures enhance recovery, and new prosthetics and neural interfaces can replace missing limbs with those that communicate bidirectionally with the brain. These advances have been fairly successful, but still most patients experience persistent problems like phantom limb pain, and others discontinue prostheses instead of learning to use them daily. These problematic patient outcomes may be due in part to the lack of consensus among basic and clinical researchers regarding the plasticity mechanisms that occur in the brain after amputation injuries. Here we review results from clinical and animal model studies to bridge this clinical-basic science gap.
Collapse
Affiliation(s)
- Tawnee Sparling
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Laxmi Iyer
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20817
| | - Paul Pasquina
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Emily Petrus
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland 20814
| |
Collapse
|
3
|
Washington KM, Solari MG, Zanoun RR, Kwegyir-Afful EE, Su AJA, Carvell GE, Lee WPA, Simons DJ. Cortical reintegration after facial allotransplantation. J Neurophysiol 2023; 129:421-430. [PMID: 36542405 DOI: 10.1152/jn.00349.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neural plasticity of the brain or its ability to reorganize following injury has likely coincided with the successful clinical correction of severe deformity by facial transplantation since 2005. In this study, we present the cortical reintegration outcomes following syngeneic hemifacial vascularized composite allograft (VCA) in a small animal model. Specifically, changes in the topographic organization and unit response properties of the rodent whisker-barrel somatosensory system were assessed following hemifacial VCA. Clear differences emerged in the barrel-cortex system when comparing naïve and hemiface transplanted animals. Neurons in the somatosensory cortex of transplanted rats had decreased sensitivity albeit increased directional sensitivity compared with naïve rats and evoked responses in transplanted animals were more temporally dispersed. In addition, receptive fields were often topographically mismatched with the indication that the mismatched topography reorganized within adjacent barrel (same row-arc bias following hemifacial transplant). These results suggest subcortical changes in the thalamus and/or brainstem play a role in hemifacial transplantation cortical plasticity and demonstrate the discrete and robust data that can be derived from this clinically relevant small animal VCA model for use in optimizing postsurgical outcomes.NEW & NOTEWORTHY Robust rodent hemifacial transplant model was used to record functional changes in somatosensory cortex after transplantation. Neurons in the somatosensory cortex of face transplant recipients had decreased sensitivity to stimulation of whiskers with increased directional sensitivity vs. naive rats. Transplant recipient cortical unit response was more dispersed in temporary vs. naive rats. Despite histological similarities to naive cortices, transplant recipient cortices had a mix of topographically appropriate and inappropriate whiskered at barrel cortex relationships.
Collapse
Affiliation(s)
- Kia M Washington
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Surgery, University of Colorado School of Medicine, CU Anschutz Medical Campus, Aurora, Colorado
| | - Mario G Solari
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rami R Zanoun
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ernest E Kwegyir-Afful
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - An-Jey A Su
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Surgery, University of Colorado School of Medicine, CU Anschutz Medical Campus, Aurora, Colorado
| | - George E Carvell
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - W P Andrew Lee
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Daniel J Simons
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Krishnan V, Wade-Kleyn LC, Israeli RR, Pelled G. Peripheral Nerve Injury Induces Changes in the Activity of Inhibitory Interneurons as Visualized in Transgenic GAD1-GCaMP6s Rats. BIOSENSORS 2022; 12:bios12060383. [PMID: 35735531 PMCID: PMC9221547 DOI: 10.3390/bios12060383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 01/11/2023]
Abstract
Peripheral nerve injury induces cortical remapping that can lead to sensory complications. There is evidence that inhibitory interneurons play a role in this process, but the exact mechanism remains unclear. Glutamate decarboxylase-1 (GAD1) is a protein expressed exclusively in inhibitory interneurons. Transgenic rats encoding GAD1–GCaMP were generated to visualize the activity in GAD1 neurons through genetically encoded calcium indicators (GCaMP6s) in the somatosensory cortex. Forepaw denervation was performed in adult rats, and fluorescent Ca2+ imaging on cortical slices was obtained. Local, intrahemispheric stimulation (cortical layers 2/3 and 5) induced a significantly higher fluorescence change of GAD1-expressing neurons, and a significantly higher number of neurons were responsive to stimulation in the denervated rats compared to control rats. However, remote, interhemispheric stimulation of the corpus callosum induced a significantly lower fluorescence change of GAD1-expressing neurons, and significantly fewer neurons were deemed responsive to stimulation within layer 5 in denervated rats compared to control rats. These results suggest that injury impacts interhemispheric communication, leading to an overall decrease in the activity of inhibitory interneurons in layer 5. Overall, our results provide direct evidence that inhibitory interneuron activity in the deprived S1 is altered after injury, a phenomenon likely to affect sensory processing.
Collapse
Affiliation(s)
- Vijai Krishnan
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA;
| | | | - Ron R. Israeli
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
| | - Galit Pelled
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: ; Tel.: +1-(517)-884-7464
| |
Collapse
|
5
|
Xing XX, Ma ZZ, Wu JJ, Ma J, Duan YJ, Hua XY, Zheng MX, Xu JG. Dysfunction in the Interaction of Information Between and Within the Bilateral Primary Sensory Cortex. Front Aging Neurosci 2022; 14:862107. [PMID: 35462694 PMCID: PMC9029819 DOI: 10.3389/fnagi.2022.862107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background Interhemispheric and intrahemispheric long-range synchronization and information communication are crucial features of functional integration between the bilateral hemispheres. Previous studies have demonstrated that disrupted functional connectivity (FC) exists in the bilateral hemispheres of patients with carpal tunnel syndrome (CTS), but they did not clearly clarify the phenomenon of central dysfunctional connectivity. This study aimed to further investigate the potential mechanism of the weakened connectivity of primary somatosensory cortex (S1) based on a precise template. Methods Patients with CTS (n = 53) and healthy control subjects (HCs) (n = 23) participated and underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. We used FC to investigate the statistical dependency of the whole brain, effective connectivity (EC) to analyze time-dependent effects, and voxel-mirrored homotopic connectivity (VMHC) to examine the coordination of FC, all of which were adopted to explore the change in interhemispheric and intrahemispheric S1. Results Compared to the healthy controls, we significantly found a decreased strength of the two connectivities in the interhemispheric S1hand, and the results of EC and VMHC were basically consistent with FC in the CTS. The EC revealed that the information output from the dominant hemisphere to the contralateral hemisphere was weakened. Conclusion This study found that maladjusted connections between and within the bilateral S1 revealed by these methods are present in patients with CTS. The dominant hemisphere with deafferentation weakens its effect on the contralateral hemisphere. The disturbance in the bilateral S1 provides reliable evidence to understand the neuropathophysiological mechanisms of decreased functional integration in the brains of patients with CTS.
Collapse
Affiliation(s)
- Xiang-Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Zhen-Zhen Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Jie Ma
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Jie Duan
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Xu-Yun Hua,
| | - Mou-Xiong Zheng
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Mou-Xiong Zheng,
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- *Correspondence: Jian-Guang Xu,
| |
Collapse
|
6
|
Learning-induced plasticity in the barrel cortex is disrupted by inhibition of layer 4 somatostatin-containing interneurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119146. [PMID: 34599984 DOI: 10.1016/j.bbamcr.2021.119146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/29/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022]
Abstract
Gaba-ergic neurons are a diverse cell class with extensive influence over cortical processing, but their role in experience-dependent plasticity is not completely understood. Here we addressed the role of cortical somatostatin- (SOM-INs) and vasoactive intestinal polypeptide- (VIP-INs) containing interneurons in a Pavlovian conditioning where stimulation of the vibrissae is used as a conditioned stimulus and tail shock as unconditioned one. This procedure induces a plastic change observed as an enlargement of the cortical functional representation of vibrissae activated during conditioning. Using layer-targeted, cell-selective DREADD transductions, we examined the involvement of SOM-INs and VIP-INs activity in learning-related plastic changes. Under optical recordings, we injected DREADD-expressing vectors into layer IV (L4) barrels or layer II/III (L2/3) areas corresponding to the activated vibrissae. The activity of the interneurons was modulated during all conditioning sessions, and functional 2-deoxyglucose (2DG) maps were obtained 24 h after the last session. In mice with L4 but not L2/3 SOM-INs suppressed during conditioning, the plastic change of whisker representation was absent. The behavioral effect of conditioning was disturbed. Both L4 SOM-INs excitation and L2/3 VIP-INs inhibition during conditioning did not affect the plasticity or the conditioned response. We found the activity of L4 SOM-INs is indispensable in the formation of learning-induced plastic change. We propose that L4 SOM-INs may provide disinhibition by blocking L4 parvalbumin interneurons, allowing a flow of information into upper cortical layers during learning.
Collapse
|
7
|
Zhong M, Cywiak C, Metto AC, Liu X, Qian C, Pelled G. Multi-session delivery of synchronous rTMS and sensory stimulation induces long-term plasticity. Brain Stimul 2021; 14:884-894. [PMID: 34029768 DOI: 10.1016/j.brs.2021.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/17/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Combining training or sensory stimulation with non-invasive brain stimulation has shown to improve performance in healthy subjects and improve brain function in patients after brain injury. However, the plasticity mechanisms and the optimal parameters to induce long-term and sustainable enhanced performance remain unknown. OBJECTIVE This work was designed to identify the protocols of which combining sensory stimulation with repetitive transcranial magnetic stimulation (rTMS) will facilitate the greatest changes in fMRI activation maps in the rat's primary somatosensory cortex (S1). METHODS Several protocols of combining forepaw electrical stimulation with rTMS were tested, including a single stimulation session compared to multiple, daily stimulation sessions, as well as synchronous and asynchronous delivery of both modalities. High-resolution fMRI was used to determine how pairing sensory stimulation with rTMS induced short and long-term plasticity in the rat S1. RESULTS All groups that received a single session of rTMS showed short-term increases in S1 activity, but these increases did not last three days after the session. The group that received a stimulation protocol of 10 Hz forepaw stimulation that was delivered simultaneously with 10 Hz rTMS for five consecutive days demonstrated the greatest increases in the extent of the evoked fMRI responses compared to groups that received other stimulation protocols. CONCLUSIONS Our results provide direct indication that pairing peripheral stimulation with rTMS induces long-term plasticity, and this phenomenon appears to follow a time-dependent plasticity mechanism. These results will be important to lead the design of new training and rehabilitation paradigms and training towards achieving maximal performance in healthy subjects.
Collapse
Affiliation(s)
- Ming Zhong
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Carolina Cywiak
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Abigael C Metto
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Xiang Liu
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Galit Pelled
- Neuroengineering Division, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; Department of Radiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
Petrus E, Dembling S, Usdin T, Isaac JTR, Koretsky AP. Circuit-Specific Plasticity of Callosal Inputs Underlies Cortical Takeover. J Neurosci 2020; 40:7714-7723. [PMID: 32913109 PMCID: PMC7531555 DOI: 10.1523/jneurosci.1056-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/13/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Injury induces synaptic, circuit, and systems reorganization. After unilateral amputation or stroke, this functional loss disrupts the interhemispheric interaction between intact and deprived somatomotor cortices to recruit deprived cortex in response to intact limb stimulation. This recruitment has been implicated in enhanced intact sensory function. In other patients, maladaptive consequences such as phantom limb pain can occur. We used unilateral whisker denervation in male and female mice to detect circuitry alterations underlying interhemispheric cortical reorganization. Enhanced synaptic strength from the intact cortex via the corpus callosum (CC) onto deep neurons in deprived primary somatosensory barrel cortex (S1BC) has previously been detected. It was hypothesized that specificity in this plasticity may depend on to which area these neurons projected. Increased connectivity to somatomotor areas such as contralateral S1BC, primary motor cortex (M1) and secondary somatosensory cortex (S2) may underlie beneficial adaptations, while increased connectivity to pain areas like anterior cingulate cortex (ACC) might underlie maladaptive pain phenotypes. Neurons from the deprived S1BC that project to intact S1BC were hyperexcitable, had stronger responses and reduced inhibitory input to CC stimulation. M1-projecting neurons also showed increases in excitability and CC input strength that was offset with enhanced inhibition. S2 and ACC-projecting neurons showed no changes in excitability or CC input. These results demonstrate that subgroups of output neurons undergo dramatic and specific plasticity after peripheral injury. The changes in S1BC-projecting neurons likely underlie enhanced reciprocal connectivity of S1BC after unilateral deprivation consistent with the model that interhemispheric takeover supports intact whisker processing.SIGNIFICANCE STATEMENT Amputation, peripheral injury, and stroke patients experience widespread alterations in neural activity after sensory loss. A hallmark of this reorganization is the recruitment of deprived cortical space which likely aids processing and thus enhances performance on intact sensory systems. Conversely, this recruitment of deprived cortical space has been hypothesized to underlie phenotypes like phantom limb pain and hinder recovery. A mouse model of unilateral denervation detected remarkable specificity in alterations in the somatomotor circuit. These changes underlie increased reciprocal connectivity between intact and deprived cortical hemispheres. This increased connectivity may help explain the enhanced intact sensory processing detected in humans.
Collapse
Affiliation(s)
- Emily Petrus
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Sarah Dembling
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Ted Usdin
- Systems Neuroscience Imaging Resource, National Institute of Mental Health, Bethesda, Maryland 20892
| | - John T R Isaac
- Janssen Neuroscience, J&J Innovations, London W1G 0BG, United Kingdom
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
9
|
Abstract
The corpus callosum is a large fiber bundle which connects contralateral brain regions. After unilateral perturbations such as stroke or amputation, interhemispheric connectivity is altered and often leads to bilateral somatomotor cortical hyperactivity in patients with poor recovery. This study reports that callosal targeting of deprived layer 5 neurons is maximally potentiated in mouse primary somatosensory barrel cortex after unilateral whisker denervation. These neurons also experience an increase in excitability and spontaneous excitatory amplitudes. These results should be relevant to the cortical responses observed in human patients after unilateral nerve transection, amputation, or stroke. Central or peripheral injury causes reorganization of the brain’s connections and functions. A striking change observed after unilateral stroke or amputation is a recruitment of bilateral cortical responses to sensation or movement of the unaffected peripheral area. The mechanisms underlying this phenomenon are described in a mouse model of unilateral whisker deprivation. Stimulation of intact whiskers yields a bilateral blood-oxygen-level−dependent fMRI response in somatosensory barrel cortex. Whole-cell electrophysiology demonstrated that the intact barrel cortex selectively strengthens callosal synapses to layer 5 neurons in the deprived cortex. These synapses have larger AMPA receptor- and NMDA receptor-mediated events. These factors contribute to a maximally potentiated callosal synapse. This potentiation occludes long-term potentiation, which could be rescued, to some extent, with prior long-term depression induction. Excitability and excitation/inhibition balance were altered in a manner consistent with cell-specific callosal changes and support a shift in the overall state of the cortex. This is a demonstration of a cell-specific, synaptic mechanism underlying interhemispheric cortical reorganization.
Collapse
|
10
|
Sandvig I, Augestad IL, Håberg AK, Sandvig A. Neuroplasticity in stroke recovery. The role of microglia in engaging and modifying synapses and networks. Eur J Neurosci 2018; 47:1414-1428. [PMID: 29786167 DOI: 10.1111/ejn.13959] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
Abstract
Neuroplasticity after ischaemic injury involves both spontaneous rewiring of neural networks and circuits as well as functional responses in neurogenic niches. These events involve complex interactions with activated microglia, which evolve in a dynamic manner over time. Although the exact mechanisms underlying these interactions remain poorly understood, increasing experimental evidence suggests a determining role of pro- and anti-inflammatory microglial activation profiles in shaping both synaptogenesis and neurogenesis. While the inflammatory response of microglia was thought to be detrimental, a more complex profile of the role of microglia in tissue remodelling is emerging. Experimental evidence suggests that microglia in response to injury can rapidly modify neuronal activity and modulate synaptic function, as well as be beneficial for the proliferation and integration of neural progenitor cells (NPCs) from endogenous neurogenic niches into functional networks thereby supporting stroke recovery. The manner in which microglia contribute towards sculpting neural synapses and networks, both in terms of activity-dependent and homeostatic plasticity, suggests that microglia-mediated pro- and/or anti-inflammatory activity may significantly contribute towards spontaneous neuronal plasticity after ischaemic lesions. In this review, we first introduce some of the key cellular and molecular mechanisms underlying neuroplasticity in stroke and then proceed to discuss the crosstalk between microglia and endogenous neuroplasticity in response to brain ischaemia with special focus on the engagement of synapses and neural networks and their implications for grey matter integrity and function in stroke repair.
Collapse
Affiliation(s)
- Ioanna Sandvig
- Faculty of Medicine and Health Sciences, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingrid Lovise Augestad
- Faculty of Medicine and Health Sciences, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Asta Kristine Håberg
- Faculty of Medicine and Health Sciences, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Axel Sandvig
- Faculty of Medicine and Health Sciences, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Neurology, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Pharmacology and Clinical Neurosciences, Division of Neuro, Head and Neck, Umeå University Hospital, Umeå, Sweden
| |
Collapse
|
11
|
Chung S, Jeong JH, Ko S, Yu X, Kim YH, Isaac JTR, Koretsky AP. Peripheral Sensory Deprivation Restores Critical-Period-like Plasticity to Adult Somatosensory Thalamocortical Inputs. Cell Rep 2018; 19:2707-2717. [PMID: 28658619 DOI: 10.1016/j.celrep.2017.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 04/27/2017] [Accepted: 06/04/2017] [Indexed: 01/19/2023] Open
Abstract
Recent work has shown that thalamocortical (TC) inputs can be plastic after the developmental critical period has closed, but the mechanism that enables re-establishment of plasticity is unclear. Here, we find that long-term potentiation (LTP) at TC inputs is transiently restored in spared barrel cortex following either a unilateral infra-orbital nerve (ION) lesion, unilateral whisker trimming, or unilateral ablation of the rodent barrel cortex. Restoration of LTP is associated with increased potency at TC input and reactivates anatomical map plasticity induced by whisker follicle ablation. The reactivation of TC LTP is accompanied by reappearance of silent synapses. Both LTP and silent synapse formation are preceded by transient re-expression of synaptic GluN2B-containing N-methyl-D-aspartate (NMDA) receptors, which are required for the reappearance of TC plasticity. These results clearly demonstrate that peripheral sensory deprivation reactivates synaptic plasticity in the mature layer 4 barrel cortex with features similar to the developmental critical period.
Collapse
Affiliation(s)
- Seungsoo Chung
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Ji-Hyun Jeong
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sukjin Ko
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Xin Yu
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Translational Neuroimaging and Neural Control Group, High-field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Young-Hwan Kim
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - John T R Isaac
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK; Department of Physiology, University of Toronto, 1 King's Circle, Toronto, ON M5S 1A8, Canada.
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Ma H, Zheng M, Lu Y, Hua X, Xu W. Cerebral plasticity after contralateral cervical nerve transfer in human by longitudinal PET evaluation. J Clin Neurosci 2018; 48:95-99. [DOI: 10.1016/j.jocn.2017.10.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/23/2017] [Indexed: 12/24/2022]
|
13
|
Atanasijevic T, Bouraoud N, McGavern DB, Koretsky AP. Transcranial manganese delivery for neuronal tract tracing using MEMRI. Neuroimage 2017; 156:146-154. [PMID: 28506873 DOI: 10.1016/j.neuroimage.2017.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/27/2017] [Accepted: 05/12/2017] [Indexed: 11/17/2022] Open
Abstract
There has been a growing interest in the use of manganese-enhanced MRI (MEMRI) for neuronal tract tracing in mammals, especially in rodents. For this MEMRI application, manganese solutions are usually directly injected into specific brain regions. Recently it was reported that manganese ions can diffuse through intact rat skull. Here the local manganese concentrations in the brain tissue after transcranial manganese application were quantified and the effectiveness of tracing from the area under the skull where delivery occurred was determined. It was established that transcranially applied manganese yields brain tissue enhancement dependent on the location of application on the skull and that manganese that enters the brain transcranially can trace to deeper brain areas.
Collapse
Affiliation(s)
- Tatjana Atanasijevic
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Nadia Bouraoud
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Dorian B McGavern
- Laboratory of Viral Immunology and Intravital Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Qiao PG, Han C, Qian T, Li GJ, Yin H. BOLD-fMRI with median nerve electrical stimulation predict hemodynamic improvement after revascularization in patients with moyamoya disease. J Magn Reson Imaging 2017; 46:1159-1166. [PMID: 28152266 DOI: 10.1002/jmri.25598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/01/2016] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To assess the severity of cerebral hemodynamic impairment and hemodynamic improvements, after revascularization in moyamoya disease (MMD) by means of blood-oxygen-level dependent functional magnetic resonance imaging (BOLD-fMRI). MATERIALS AND METHODS BOLD-fMRI with median nerve electrical stimulation based on echo planar imaging was performed in 73 volunteers with MMD and 15 healthy volunteers using a 3.0 Tesla MRI scanner. Twenty-four MMD patients were reexamined after encephaloduroarteriosynangiosis. Time-signal intensity curves of the activated area of the contralateral primary somatosensory cortex were computed. Negative response time (Tnr) and peak (Pnr), positive response time (Tpr) and peak (Ppr), and time to negative peak (TTPn) and positive peak (TTPp) were measured. RESULTS Compared with nonparesthesia group and the asymptomatic side of paresthesia group, the patients with paresthesia showed extended Tnr (22.04 ± 3.34 s versus 9.57 ± 2.27 s and 12.67 ± 2.69 s, P = 0.0096), decreased Pnr (-0.47 ± 0.06 versus -0.30 ± 0.09 and -0.33 ± 0.09, P = 0.010), delayed TTPn (9.04 ± 1.39 s versus 3.66 ± 0.79 s and 4.88 ± 1.10 s, P = 0.0064), shortened Tpr (22.75 ± 2.30 s versus 36.85 ± 2.68 s and 33 ± 2.49 s, P = 0.0010), and decreased Ppr (0.62 ± 0.08 versus 0.99 ± 0.15 and 0.97 ± 0.11, P = 0.0149) when subjected to median nerve electrical stimulation in the symptomatic side. After surgery, the patients with paresthesia showed shorter Tnr (1.53 ± 1.66 s versus 17.88 ± 22.61 s, P = 0.0002), increased Pnr (-0.14 ± 0.17 versus -0.44 ± 0.53, P = 0.0178), advanced TTPn (1.29 ± 1.21 s versus 7.29 ± 8.21 s, P = 0.0005), extended Tpr (36.94 ± 6.41 s versus 25.18 ± 15.51 s, P = 0.0091), increased Ppr (1.21 ± 0.87 versus 0.77 ± 0.60, P = 0.0201), and advanced TTPp (11.18 ± 4.70 s versus 27.29 ± 20.00 s, P = 0.0046). CONCLUSION Bold-fMRI is useful to assess disease severity and surgical efficacy in MMD. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2017;46:1159-1166.
Collapse
Affiliation(s)
- Peng-Gang Qiao
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Radiology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Cong Han
- Department of Neurosurgery, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Tianyi Qian
- Germany Siemens Healthcare, MR Collaborations NE Asia, Beijing, China
| | - Gong-Jie Li
- Department of Radiology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
15
|
Fornander L, Nyman T, Hansson T, Brismar T, Engström M. Inter-hemispheric plasticity in patients with median nerve injury. Neurosci Lett 2016; 628:59-66. [PMID: 27291455 DOI: 10.1016/j.neulet.2016.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 02/05/2023]
Abstract
Peripheral nerve injuries result in reorganization within the contralateral hemisphere. Furthermore, recent animal and human studies have suggested that the plastic changes in response to peripheral nerve injury also include several areas of the ipsilateral hemisphere. The objective of this study was to map the inter-hemispheric plasticity in response to median nerve injury, to investigate normal differences in contra- and ipsilateral activation, and to study the impact of event-related or blocked functional magnetic resonance imaging (fMRI) design on ipsilateral activation. Four patients with median nerve injury at the wrist (injured and epineurally sutured >2 years earlier) and ten healthy volunteers were included. 3T fMRI was used to map the hemodynamic response to brain activity during tactile stimulation of the fingers, and a laterality index (LI) was calculated. Stimulation of Digits II-III of the injured hand resulted in a reduction in contralateral activation in the somatosensory area SI. Patients had a lower LI (0.21±0.15) compared to healthy controls (0.60±0.26) indicating greater ipsilateral activation of the primary somatosensory cortex. The spatial dispersion of the coordinates for areas SI and SII was larger in the ipsilateral than in the contralateral hemisphere in the healthy controls, and was increased in the contralateral hemisphere of the patients compared to the healthy controls. There was no difference in LI between the event-related and blocked paradigms. In conclusion, patients with median nerve injury have increased ipsilateral SI area activation, and spatially more dispersed contralateral SI activation during tactile stimulation of their injured hand. In normal subjects ipsilateral activation has larger spatial distribution than the contralateral. Previous findings in patients performed with the blocked fMRI paradigm were confirmed. The increase in ipsilateral SI activation may be due to an interhemispheric disinhibition associated with changes in the afferent signal inflow to the contralateral primary somatosensory cortex.
Collapse
Affiliation(s)
- Lotta Fornander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Orthopaedics, Vrinnevi Hospital, Norrköping, Sweden.
| | - Torbjörn Nyman
- Pain and Rehabilitation Centre, UHL, County Council of Östergötland, Linköping, Sweden
| | - Thomas Hansson
- Division of Plastic Surgery, Hand Surgery and Burns, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Tom Brismar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Maria Engström
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|