1
|
Alduais A, Alarifi HS, Alfadda H. Using Biosensors to Detect and Map Language Areas in the Brain for Individuals with Traumatic Brain Injury. Diagnostics (Basel) 2024; 14:1535. [PMID: 39061672 PMCID: PMC11275263 DOI: 10.3390/diagnostics14141535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The application of biosensors in neurolinguistics has significantly advanced the detection and mapping of language areas in the brain, particularly for individuals with brain trauma. This study explores the role of biosensors in this domain and proposes a conceptual model to guide their use in research and clinical practice. The researchers explored the integration of biosensors in language and brain function studies, identified trends in research, and developed a conceptual model based on cluster and thematic analyses. Using a mixed-methods approach, we conducted cluster and thematic analyses on data curated from Web of Science, Scopus, and SciSpace, encompassing 392 articles. This dual analysis facilitated the identification of research trends and thematic insights within the field. The cluster analysis highlighted Functional Magnetic Resonance Imaging (fMRI) dominance and the importance of neuroplasticity in language recovery. Biosensors such as the Magnes 2500 watt-hour (WH) neuromagnetometer and microwire-based sensors are reliable for real-time monitoring, despite methodological challenges. The proposed model synthesizes these findings, emphasizing biosensors' potential in preoperative assessments and therapeutic customization. Biosensors are vital for non-invasive, precise mapping of language areas, with fMRI and repetitive Transcranial Magnetic Stimulation (rTMS) playing pivotal roles. The conceptual model serves as a strategic framework for employing biosensors and improving neurolinguistic interventions. This research may enhance surgical planning, optimize recovery therapies, and encourage technological advancements in biosensor precision and application protocols.
Collapse
Affiliation(s)
- Ahmed Alduais
- Department of Human Sciences (Psychology), University of Verona, 37129 Verona, Italy
| | - Hessah Saad Alarifi
- Department of Educational Administration, College of Education, King Saud University, Riyadh 11362, Saudi Arabia
| | - Hind Alfadda
- Department of Curriculum and Instruction, College of Education, King Saud University, Riyadh 11362, Saudi Arabia;
| |
Collapse
|
2
|
Day TKM, Hermosillo R, Conan G, Randolph A, Perrone A, Earl E, Byington N, Hendrickson TJ, Elison JT, Fair DA, Feczko E. Multi-level fMRI analysis applied to hemispheric specialization in the language network, functional areas, and their behavioral correlations in the ABCD sample. Dev Cogn Neurosci 2024; 66:101355. [PMID: 38354531 PMCID: PMC10875197 DOI: 10.1016/j.dcn.2024.101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/06/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
Prior research suggests that the organization of the language network in the brain is left-dominant and becomes more lateralized with age and increasing language skill. The age at which specific components of the language network become adult-like varies depending on the abilities they subserve. So far, a large, developmental study has not included a language task paradigm, so we introduce a method to study resting-state laterality in the Adolescent Brain Cognitive Development (ABCD) study. Our approach mixes source timeseries between left and right homotopes of the (1) inferior frontal and (2) middle temporal gyri and (3) a region we term "Wernicke's area" near the supramarginal gyrus. Our large subset sample size of ABCD (n = 6153) allows improved reliability and validity compared to previous, smaller studies of brain-behavior associations. We show that behavioral metrics from the NIH Youth Toolbox and other resources are differentially related to tasks with a larger linguistic component over ones with less (e.g., executive function-dominant tasks). These baseline characteristics of hemispheric specialization in youth are critical for future work determining the correspondence of lateralization with language onset in earlier stages of development.
Collapse
Affiliation(s)
- Trevor K M Day
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
| | - Robert Hermosillo
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Gregory Conan
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Anita Randolph
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Anders Perrone
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Eric Earl
- Data Science & Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Nora Byington
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Timothy J Hendrickson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Damien A Fair
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Jung JY, Park CA, Lee YB, Kang CK. Investigation of Functional Connectivity Differences between Voluntary Respirations via Mouth and Nose Using Resting State fMRI. Brain Sci 2020; 10:brainsci10100704. [PMID: 33022977 PMCID: PMC7599777 DOI: 10.3390/brainsci10100704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 12/03/2022] Open
Abstract
The problems of mouth breathing have been well-studied, but the neural correlates of functional connectivity (FC) still remain unclear. We examined the difference in FC between the two types of breathing. For our study, 21 healthy subjects performed voluntary mouth and nasal breathing conditions during a resting state functional magnetic resonance imaging (fMRI). The region of interest (ROI) analysis of FC in fMRI was conducted using a MATLAB-based imaging software. The resulting analysis showed that mouth breathing had widespread connections and more left lateralization. Left inferior temporal gyrus had the most left lateralized connections in mouth breathing condition. Furthermore, the central opercular cortex FC showed a significant relationship with mouth breathing. For nasal breathing, the sensorimotor area had symmetry FC pattern. These findings suggest that various FCs difference appeared between two breathing conditions. The impacts of these differences need to be more investigated to find out potential link with cognitive decline in mouth breathing syndrome.
Collapse
Affiliation(s)
- Ju-Yeon Jung
- Department of Health Science, Gachon University Graduate School, Incheon 21936, Korea;
| | - Chan-A Park
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Korea;
| | - Yeong-Bae Lee
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
| | - Chang-Ki Kang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
- Department of Radiological Science, College of Health Science, Gachon University, Incheon 21936, Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21936, Korea
- Correspondence: ; Tel.: +82-32-820-4110
| |
Collapse
|
4
|
Affiliation(s)
- Andrei I Holodny
- 1 Department of Radiology, Memorial Sloan-Kettering Cancer Center , New York, New York.,2 Weill Medical College of Cornell University , New York, New York.,3 Weill Cornell Graduate School of Medical Sciences , New York, New York
| |
Collapse
|