1
|
Yuk J, Sainburg RL. Lateralization of acquisition and consolidation in direction but not amplitude of a motor skill task. Exp Brain Res 2024; 242:2341-2356. [PMID: 39110162 DOI: 10.1007/s00221-024-06900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024]
Abstract
Previous research suggests that the neural processes underlying specification of movement direction and amplitude are independently represented in the nervous system. However, our understanding of acquisition and consolidation processes in the direction and distance learning remains limited. We designed a virtual air hockey task, in which the puck direction is determined by the hand direction at impact, while the puck distance is determined by the amplitude of the velocity. In two versions of this task, participants were required to either specify the direction or the distance of the puck, while the alternate variable did not contribute to task success. Separate groups of right-handed participants were recruited for each task. Each participant was randomly assigned to one of two groups with a counter-balanced arm practice sequence (right to left, or left to right). We examined acquisition and, after 24 h, we examined two aspects of consolidation: 1) same hand performance to test the durability and 2) the opposite hand to test the effector-independent consolidation (interlimb transfer) of learning. The distance task showed symmetry between hands in the extent of acquisition as well as in both aspects of consolidation. In contrast, the direction task showed asymmetry in both acquisition and consolidation: the dominant right arm showed faster and greater acquisition and greater transfer from the opposite arm training. The asymmetric acquisition and consolidation processes shown in the direction task might be explained by lateralized control and mapping of direction, an interpretation consistent with previous findings on motor adaptation paradigms.
Collapse
Affiliation(s)
- Jisung Yuk
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.
| | - Robert L Sainburg
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
- Department of Neurology, Pennsylvania State College of Medicine, Hershey, PA, USA
| |
Collapse
|
2
|
Kim T, Zhou R, Gassass S, Soberano T, Liu L, Philip BA. Healthy adults favor stable left/right hand choices over performance at an unconstrained reach-to-grasp task. Exp Brain Res 2024; 242:1349-1359. [PMID: 38563977 PMCID: PMC11506212 DOI: 10.1007/s00221-024-06828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Reach-to-grasp actions are fundamental to the daily activities of human life, but few methods exist to assess individuals' reaching and grasping actions in unconstrained environments. The Block Building Task (BBT) provides an opportunity to directly observe and quantify these actions, including left/right hand choices. Here we sought to investigate the motor and non-motor causes of left/right hand choices, and optimize the design of the BBT, by manipulating motor and non-motor difficulty in the BBT's unconstrained reach-to-grasp task. We hypothesized that greater motor and non-motor (e.g. cognitive/perceptual) difficulty would drive increased usage of the dominant hand. To test this hypothesis, we modulated block size (large vs. small) to influence motor difficulty, and model complexity (10 vs. 5 blocks per model) to influence non-motor difficulty, in healthy adults (n = 57). Our data revealed that increased motor and non-motor difficulty led to lower task performance (slower task speed), but participants only increased use of their dominant hand only under the most difficult combination of conditions: in other words, participants allowed their performance to degrade before changing hand choices, even though participants were instructed only to optimize performance. These results demonstrate that hand choices during reach-to grasp actions are more stable than motor performance in healthy right-handed adults, but tasks with multifaceted difficulties can drive individuals to rely more on their dominant hand.
Collapse
Affiliation(s)
- Taewon Kim
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
- Department of Physical Medicine and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA
| | - Ruiwen Zhou
- Department of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Samah Gassass
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Téa Soberano
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Lei Liu
- Department of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin A Philip
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Dexheimer B, Sainburg R, Sharp S, Philip BA. Roles of Handedness and Hemispheric Lateralization: Implications for Rehabilitation of the Central and Peripheral Nervous Systems: A Rapid Review. Am J Occup Ther 2024; 78:7802180120. [PMID: 38305818 PMCID: PMC11017742 DOI: 10.5014/ajot.2024.050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
IMPORTANCE Handedness and motor asymmetry are important features of occupational performance. With an increased understanding of the basic neural mechanisms surrounding handedness, clinicians will be better able to implement targeted, evidence-based neurorehabilitation interventions to promote functional independence. OBJECTIVE To review the basic neural mechanisms behind handedness and their implications for central and peripheral nervous system injury. DATA SOURCES Relevant published literature obtained via MEDLINE. FINDINGS Handedness, along with performance asymmetries observed between the dominant and nondominant hands, may be due to hemispheric specializations for motor control. These specializations contribute to predictable motor control deficits that are dependent on which hemisphere or limb has been affected. Clinical practice recommendations for occupational therapists and other rehabilitation specialists are presented. CONCLUSIONS AND RELEVANCE It is vital that occupational therapists and other rehabilitation specialists consider handedness and hemispheric lateralization during evaluation and treatment. With an increased understanding of the basic neural mechanisms surrounding handedness, clinicians will be better able to implement targeted, evidence-based neurorehabilitation interventions to promote functional independence. Plain-Language Summary: The goal of this narrative review is to increase clinicians' understanding of the basic neural mechanisms related to handedness (the tendency to select one hand over the other for specific tasks) and their implications for central and peripheral nervous system injury and rehabilitation. An enhanced understanding of these mechanisms may allow clinicians to better tailor neurorehabilitation interventions to address motor deficits and promote functional independence.
Collapse
Affiliation(s)
- Brooke Dexheimer
- Brooke Dexheimer, PhD, OTD, OTR/L, is Assistant Professor, Department of Occupational Therapy, Virginia Commonwealth University, Richmond;
| | - Robert Sainburg
- Robert Sainburg, PhD, OTR, is Professor and Huck Institutes Distinguished Chair, Department of Kinesiology, Pennsylvania State University, University Park, and Department of Neurology, Pennsylvania State College of Medicine, Hershey
| | - Sydney Sharp
- Sydney Sharp, is Occupational Therapy Doctoral Student, Department of Occupational Therapy, Virginia Commonwealth University, Richmond
| | - Benjamin A Philip
- Benjamin A. Philip, PhD, is Assistant Professor, Program in Occupational Therapy, Department of Neurology and Department of Surgery, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
4
|
Kim T, Lohse KR, Mackinnon SE, Philip BA. Patient Outcomes After Peripheral Nerve Injury Depend on Bimanual Dexterity and Preserved Use of the Affected Hand. Neurorehabil Neural Repair 2024; 38:134-147. [PMID: 38268466 PMCID: PMC10922924 DOI: 10.1177/15459683241227222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
BACKGROUND Little is known about how peripheral nerve injury affects human performance, behavior, and life. Hand use choices are important for rehabilitation after unilateral impairment, but rarely measured, and are not changed by the normal course of rehabilitation and daily life. OBJECTIVE To identify the relationship between hand use (L/R choices), motor performance, and patient-centered outcomes. METHODS Participants (n = 48) with unilateral peripheral nerve injury were assessed for hand use via Block Building Task, Motor Activity Log, and Edinburgh Handedness Inventory; dexterity (separately for each hand) via Nine-Hole Peg Test, Jebsen Taylor Hand Function Test, and a precision drawing task; patient-centered outcomes via surveys of disability, activity participation, and health-related quality of life; and injury-related factors including injury cause and affected nerve. Factor Analysis of Mixed Data was used to explore relationships between these variables. The data were analyzed under 2 approaches: comparing dominant hand (DH) versus non-dominant hand (NH), or affected versus unaffected hand. RESULTS The data were best explained by 5 dimensions. Good patient outcomes were associated with NH performance, DH performance (separately and secondarily to NH performance), and preserved function and use of the affected hand; whereas poor patient outcomes were associated with preserved but unused function of the affected hand. CONCLUSION After unilateral peripheral nerve injury, hand function, hand usage, and patient life arise from a complex interaction of many factors. To optimize rehabilitation after unilateral impairment, new rehabilitation methods are needed to promote performance and use with the NH, as well as the injured hand.
Collapse
Affiliation(s)
- Taewon Kim
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, United States
| | - Keith R Lohse
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, United States
| | - Susan E. Mackinnon
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Benjamin A. Philip
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
5
|
Kim T, Zhou R, Gassass S, Liu L, Philip BA. Healthy adults favor stable left/right hand choices over performance at an unconstrained reach-to-grasp task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561912. [PMID: 37904957 PMCID: PMC10614726 DOI: 10.1101/2023.10.11.561912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Reach-to-grasp actions are fundamental to the daily activities of human life, but few methods exist to assess individuals' reaching and grasping actions in unconstrained environments. The Block Building Task (BBT) provides an opportunity to directly observe and quantify these actions, including left/right hand choices. Here we sought to investigate the motor and non-motor causes of left/right hand choices, and optimize the design of the BBT, by manipulating motor and non-motor difficulty in the BBT's unconstrained reach-to-grasp task We hypothesized that greater motor and non-motor (e.g. cognitive/perceptual) difficulty would drive increased usage of the dominant hand. To test this hypothesis, we modulated block size (large vs. small) to influence motor difficulty, and model complexity (10 vs. 5 blocks per model) to influence non-motor difficulty, in healthy adults (n=57). We hypothesized that healthy adults with high non-dominant hand performance in a precision drawing task should be more likely to use their non-dominant hand in the BBT. Our data revealed that increased motor and non-motor difficulty led to lower task performance (slower speed), but participants only increased use of their dominant hand only under the most difficult combination of conditions: in other words, participants allowed their performance to degrade before changing hand choices, even though participants were instructed only to optimize performance. These results demonstrate that hand choices during reach-to grasp actions are more stable than motor performance in healthy right-handed adults, but tasks with multifaceted difficulties can drive individuals to rely more on their dominant hand. Statements and Declarations Dr. Philip and Washington University in St. Louis have a licensing agreement with PlatformSTL to commercialize the iPad app used in this study.
Collapse
|
6
|
Tsurugizawa T, Taki A, Zalesky A, Kasahara K. Increased interhemispheric functional connectivity during non-dominant hand movement in right-handed subjects. iScience 2023; 26:107592. [PMID: 37705959 PMCID: PMC10495657 DOI: 10.1016/j.isci.2023.107592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
Hand preference is one of the behavioral expressions of lateralization in the brain. Previous fMRI studies showed the activation in several regions including the motor cortex and the cerebellum during single-hand movement. However, functional connectivity related to hand preference has not been investigated. Here, we used the generalized psychophysiological interaction (gPPI) approach to investigate the alteration of functional connectivity during single-hand movement from the resting state in right-hand subjects. The functional connectivity in interhemispheric motor-related regions including the supplementary motor area, the precentral gyrus, and the cerebellum was significantly increased during non-dominant hand movement, while functional connectivity was not increased during dominant hand movement. The general linear model (GLM) showed activation in contralateral supplementary motor area, contralateral precentral gyrus, and ipsilateral cerebellum during right- or left-hand movement. These results indicate that a combination of GLM and gPPI analysis can detect the lateralization of hand preference more clearly.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Ai Taki
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kazumi Kasahara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan
| |
Collapse
|
7
|
Recognizing the individualized sensorimotor loop of stroke patients during BMI-supported rehabilitation training based on brain functional connectivity analysis. J Neurosci Methods 2022; 378:109658. [PMID: 35764160 DOI: 10.1016/j.jneumeth.2022.109658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Electroencephalogram (EEG) based brain-machine interaction training can facilitate rehabilitation by closing the sensorimotor loop. However, it remains unclear how to evaluate whether the loop is closed, especially for stroke patients whose brain regions of motor control and sensorimotor feedback could be altered. Our hypothesis is that motor recovery depends on whether sensorimotor loop is established poststroke. This study aims to explore how to evaluate the establishment of sensorimotor loop based on the evolving neural reorganization patterns after stroke. NEW METHOD 14 stroke patients participated in the experiment and EEG were recorded during three specific tasks: Movement Imagery (MI), Passive Movement (PM) and Movement Execution (ME). Activated brain regions correlated with movement intention expression and sensorimotor feedback were detected respectively during MI and PM. In ME, local-averaged Phase Lag Index (PLI) was analyzed to represent the functional connectivity between activated brain regions of MI and PM. RESULTS Individualized cortical activation was found both in MI and PM. The overlapping brain activation during PM and MI did not correlate with patient's Fugl-Meyer Upper Extremity Motor Score (FMU) (p=0.26). However, we found that FMU of the group with higher local-averaged PLI was statistically higher than FMU of the group with lower local-averaged PLI compared with global-averaged PLI (p<0.05). CONCLUSIONS The findings demonstrate functional connectivity between activated brain regions of motor control and sensorimotor feedback may imply if the individualized sensorimotor loop is established poststroke. The successful formation of the closed loop can indicate stroke patients' motor recovery.
Collapse
|