1
|
Amaro Alves Romariz S, Klippel Zanona Q, Vendramin Pasquetti M, Cardozo Muller G, de Almeida Xavier J, Hermanus Schoorlemmer G, Monteiro Longo B, Calcagnotto ME. Modification of pre-ictal cortico-hippocampal oscillations by medial ganglionic eminence precursor cells grafting in the pilocarpine model of epilepsy. Epilepsy Behav 2024; 159:110027. [PMID: 39217756 DOI: 10.1016/j.yebeh.2024.110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Cell replacement therapies using medial ganglionic eminence (MGE)-derived GABAergic precursors reduce seizures by restoring inhibition in animal models of epilepsy. However, how MGE-derived cells affect abnormal neuronal networks and consequently brain oscillations to reduce ictogenesis is still under investigation. We performed quantitative analysis of pre-ictal local field potentials (LFP) of cortical and hippocampal CA1 areas recorded in vivo in the pilocarpine rat model of epilepsy, with or without intrahippocampal MGE-precursor grafts (PILO and PILO+MGE groups, respectively). The PILO+MGE animals had a significant reduction in the number of seizures. The quantitative analysis of pre-ictal LFP showed decreased power of cortical and hippocampal delta, theta and beta oscillations from the 5 min. interictal baseline to the 20 s. pre-ictal period in both groups. However, PILO+MGE animals had higher power of slow and fast oscillations in the cortex and lower power of slow and fast oscillations in the hippocampus compared to the PILO group. Additionally, PILO+MGE animals exhibited decreased cortico-hippocampal synchrony for theta and gamma oscillations at seizure onset and lower hippocampal CA1 synchrony between delta and theta with slow gamma oscillations compared to PILO animals. These findings suggest that MGE-derived cell integration into the abnormally rewired network may help control ictogenesis.
Collapse
Affiliation(s)
- Simone Amaro Alves Romariz
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP/SP), São Paulo, Brazil
| | - Querusche Klippel Zanona
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Neuroscience, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriel Cardozo Muller
- Graduate Program in Epidemiology, Medical School, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Medical Science, Universidade do Vale do Taquari, Lajeado, RS, Brazil
| | - Jaqueline de Almeida Xavier
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Guus Hermanus Schoorlemmer
- Laboratório de Fisiologia Cardiovascular e Respiratória, Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP/SP), São Paulo, Brazil
| | - Beatriz Monteiro Longo
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP/SP), São Paulo, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Neuroscience, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Müller V, Lindenberger U. Hyper-brain hyper-frequency network topology dynamics when playing guitar in quartet. Front Hum Neurosci 2024; 18:1416667. [PMID: 38919882 PMCID: PMC11196789 DOI: 10.3389/fnhum.2024.1416667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Ensemble music performance is a highly coordinated form of social behavior requiring not only precise motor actions but also synchronization of different neural processes both within and between the brains of ensemble players. In previous analyses, which were restricted to within-frequency coupling (WFC), we showed that different frequencies participate in intra- and inter-brain coordination, exhibiting distinct network topology dynamics that underlie coordinated actions and interactions. However, many of the couplings both within and between brains are likely to operate across frequencies. Hence, to obtain a more complete picture of hyper-brain interaction when musicians play the guitar in a quartet, cross-frequency coupling (CFC) has to be considered as well. Furthermore, WFC and CFC can be used to construct hyper-brain hyper-frequency networks (HB-HFNs) integrating all the information flows between different oscillation frequencies, providing important details about ensemble interaction in terms of network topology dynamics (NTD). Here, we reanalyzed EEG (electroencephalogram) data obtained from four guitarists playing together in quartet to explore changes in HB-HFN topology dynamics and their relation to acoustic signals of the music. Our findings demonstrate that low-frequency oscillations (e.g., delta, theta, and alpha) play an integrative or pacemaker role in such complex networks and that HFN topology dynamics are specifically related to the guitar quartet playing dynamics assessed by sound properties. Simulations by link removal showed that the HB-HFN is relatively robust against loss of connections, especially when the strongest connections are preserved and when the loss of connections only affects the brain of one guitarist. We conclude that HB-HFNs capture neural mechanisms that support interpersonally coordinated action and behavioral synchrony.
Collapse
Affiliation(s)
- Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, United Kingdom
| |
Collapse
|
3
|
Li J, Ping AA, Zhou Y, Su T, Li X, Xu S. Interictal EEG features as computational biomarkers of West syndrome. Front Pediatr 2024; 12:1406772. [PMID: 38903771 PMCID: PMC11188363 DOI: 10.3389/fped.2024.1406772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Background West syndrome (WS) is a devastating epileptic encephalopathy with onset in infancy and early childhood. It is characterized by clustered epileptic spasms, developmental arrest, and interictal hypsarrhythmia on electroencephalogram (EEG). Hypsarrhythmia is considered the hallmark of WS, but its visual assessment is challenging due to its wide variability and lack of a quantifiable definition. This study aims to analyze the EEG patterns in WS and identify computational diagnostic biomarkers of the disease. Method Linear and non-linear features derived from EEG recordings of 31 WS patients and 20 age-matched controls were compared. Subsequently, the correlation of the identified features with structural and genetic abnormalities was investigated. Results WS patients showed significantly elevated alpha-band activity (0.2516 vs. 0.1914, p < 0.001) and decreased delta-band activity (0.5117 vs. 0.5479, p < 0.001), particularly in the occipital region, as well as globally strengthened theta-band activity (0.2145 vs. 0.1655, p < 0.001) in power spectrum analysis. Moreover, wavelet-bicoherence analysis revealed significantly attenuated cross-frequency coupling in WS patients. Additionally, bi-channel coherence analysis indicated minor connectivity alterations in WS patients. Among the four non-linear characteristics of the EEG data (i.e., approximate entropy, sample entropy, permutation entropy, and wavelet entropy), permutation entropy showed the most prominent global reduction in the EEG of WS patients compared to controls (1.4411 vs. 1.5544, p < 0.001). Multivariate regression results suggested that genetic etiologies could influence the EEG profiles of WS, whereas structural factors could not. Significance A combined global strengthening of theta activity and global reduction of permutation entropy can serve as computational EEG biomarkers for WS. Implementing these biomarkers in clinical practice may expedite diagnosis and treatment in WS, thereby improving long-term outcomes.
Collapse
Affiliation(s)
- Jiaqing Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An-an Ping
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yalan Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangfeng Su
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Sanqing Xu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Park KM, Kim KT, Lee DA, Motamedi GK, Cho YW. Structural and functional multilayer network analysis in restless legs syndrome patients. J Sleep Res 2024; 33:e14104. [PMID: 37963544 DOI: 10.1111/jsr.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023]
Abstract
The combination of brain structural and functional connectivity offers complementary insights into its organisation. Multilayer network analysis explores various relationships across different layers within a single system. We aimed to investigate changes in the structural and functional multilayer network in 69 patients with primary restless legs syndrome (RLS) compared with 50 healthy controls. Participants underwent diffusion tensor imaging (DTI) and resting state-functional magnetic resonance imaging (rs-fMRI) using a three-tesla MRI scanner. We constructed a structural connectivity matrix derived from DTI using a DSI program and made a functional connectivity matrix based on rs-fMRI using an SPM program and CONN toolbox. A multilayer network analysis, using BRAPH program, was then conducted to assess the connectivity patterns in both groups. At the global level, significant differences there were between the patients with RLS and healthy controls. The average multiplex participation was lower in patients with RLS than in healthy controls (0.804 vs. 0.821, p = 0.042). Additionally, several regions showed significant differences in the nodal level in multiplex participation between patients with RLS and healthy controls, particularly the frontal and temporal lobes. The regions affected included the inferior frontal gyrus, medial orbital gyrus, precentral gyrus, rectus gyrus, insula, superior and inferior temporal gyrus, medial and lateral occipitotemporal gyrus, and temporal pole. These results represent evidence of diversity in interactions between structural and functional connectivity in patients with RLS, providing a more comprehensive understanding of the brain network in RLS. This may contribute to a precise diagnosis of RLS, and aid the development of a biomarker to track treatment effectiveness.
Collapse
Affiliation(s)
- Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Keun Tae Kim
- Department of Neurology, Keimyung University School of Medicine, Daegu, Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Gholam K Motamedi
- Department of Neurology, Georgetown University Hospital, Washington, District of Columbia, USA
| | - Yong Won Cho
- Department of Neurology, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
5
|
Warren AEL, Tobochnik S, Chua MMJ, Singh H, Stamm MA, Rolston JD. Neurostimulation for Generalized Epilepsy: Should Therapy be Syndrome-specific? Neurosurg Clin N Am 2024; 35:27-48. [PMID: 38000840 PMCID: PMC10676463 DOI: 10.1016/j.nec.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Current applications of neurostimulation for generalized epilepsy use a one-target-fits-all approach that is agnostic to the specific epilepsy syndrome and seizure type being treated. The authors describe similarities and differences between the 2 "archetypes" of generalized epilepsy-Lennox-Gastaut syndrome and Idiopathic Generalized Epilepsy-and review recent neuroimaging evidence for syndrome-specific brain networks underlying seizures. Implications for stimulation targeting and programming are discussed using 5 clinical questions: What epilepsy syndrome does the patient have? What brain networks are involved? What is the optimal stimulation target? What is the optimal stimulation paradigm? What is the plan for adjusting stimulation over time?
Collapse
Affiliation(s)
- Aaron E L Warren
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Steven Tobochnik
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa M J Chua
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hargunbir Singh
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michaela A Stamm
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Sun F, Wang S, Wang Y, Sun J, Li Y, Li Y, Xu Y, Wang X. Differences in generation and maintenance between ictal and interictal generalized spike-and-wave discharges in childhood absence epilepsy: A magnetoencephalography study. Epilepsy Behav 2023; 148:109440. [PMID: 37748416 DOI: 10.1016/j.yebeh.2023.109440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE Childhood absence epilepsy (CAE) is characterized by impaired consciousness and distinct electroencephalogram (EEG) patterns. However, interictal epileptiform discharges (IEDs) do not lead to noticeable symptoms. This study examines the disparity between ictal and interictal generalized spike-and-wave discharges (GSWDs) to determine the mechanisms behind CAE and consciousness. METHODS We enrolled 24 patients with ictal and interictal GSWDs in the study. The magnetoencephalography (MEG) data were recorded before and during GSWDs at a sampling rate of 6000 Hz and analyzed across six frequency bands. The absolute and relative spectral power were estimated with the Minimum Norm Estimate (MNE) combined with the Welch technique. All the statistical analyses were performed using paired-sample tests. RESULTS During GSWDs, the right lateral occipital cortex indicated a significant difference in the theta band (5-7 Hz) with stronger power (P = 0.027). The interictal group possessed stronger spectral power in the delta band (P < 0.01) and weaker power in the alpha band (P < 0.01) as early as 10 s before GSWDs in absolute and relative spectral power. Additionally, the ictal group revealed enhanced spectral power inside the occipital cortex in the alpha band and stronger spectral power in the right frontal regions within beta (15-29 Hz), gamma 1 (30-59 Hz), and gamma 2 (60-90 Hz) bands. CONCLUSIONS GSWDs seem to change gradually, with local neural activity changing even 10 s before discharge. During GSWDs, visual afferent stimulus insensitivity could be related to the impaired response state in CAE. The inhibitory signal in the low-frequency band can shorten GSWD duration, thereby achieving seizure control through inhibitory effect strengthening.
Collapse
Affiliation(s)
- Fangling Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Siyi Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yingfan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yanzhang Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Ajaz R, Mousavi SR, Mirsattari SM, Leung LS. Paroxysmal slow-wave discharges in a model of absence seizure are coupled to gamma oscillations in the thalamocortical and limbic systems. Epilepsy Res 2023; 191:107103. [PMID: 36841021 DOI: 10.1016/j.eplepsyres.2023.107103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/21/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
OBJECTIVE Using the gamma-butyrolactone (GBL) model of absence seizures in Long-Evans rats, this study investigated if gamma (30-160 Hz) activity were cross-frequency modulated by the 2-6 Hz slow-wave discharges induced by GBL in the limbic system. We hypothesized that inactivation of the nucleus reuniens (RE), which projects to frontal cortex (FC) and hippocampus, would affect the cross-frequency coupling of gamma (γ) in different brain regions. METHODS Local field potentials were recorded by electrodes implanted in the FC, ventrolateral thalamus (TH), basolateral amygdala (BLA), nucleus accumbens (NAC), and dorsal hippocampus (CA1) of behaving rats. At each electrode, the coupling between the γ amplitude envelope to the phase of the 2-6 Hz slow-waves (SW) was measured by modulation index (MI) or cross-frequency coherence (CFC) of γ amplitude with SW. In separate experiments, the RE was infused with saline or GABAA receptor agonist, muscimol, before the injection of GBL. RESULTS Following GBL injection, an increase in MI and CFC of SW to γ1 (30-58 Hz), γ2 (62-100 Hz) and γ3 (100-160 Hz) bands was observed at the FC, hippocampus and BLA, with significant increase in SW-γ1 and SW-γ3 coupling at TH, and increase in peak SW-γ1 CFC at NAC. Strong SW-γ modulation was also found during baseline immobility high-voltage spindles. Muscimol inactivation of RE, as compared to saline infusion, significantly decreased SW-γ1 CFC in the FC, and peak frequency of the SW-γ1 CFC in the thalamus, but did not significantly alter SW-γ CFCs in the hippocampus, BLA or NAC. SIGNIFICANCE The paroxysmal 2-6 Hz SW discharges, a hallmark of absence seizure, significantly modulate γ activity in the hippocampus, BLA and NAC, suggesting a modulation of limbic functions. RE inactivation disrupted the SW modulation of FC and TH, partly supporting our hypothesis that RE participates in the modulation of SW discharges.
Collapse
Affiliation(s)
- Rukham Ajaz
- Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| | - Seyed Reza Mousavi
- Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Seyed M Mirsattari
- Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada; Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - L Stan Leung
- Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada; Departments of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
8
|
Li Z, Huang J, Wei W, Jiang S, Liu H, Luo H, Ruan J. EEG Oscillatory Networks in Peri-Ictal Period of Absence Epilepsy. Front Neurol 2022; 13:825225. [PMID: 35547382 PMCID: PMC9081722 DOI: 10.3389/fneur.2022.825225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/28/2022] [Indexed: 11/15/2022] Open
Abstract
Objective To investigate the dynamical brain network changes before and after an absence seizure episode in absence epilepsy (AE). Methods 21 AE patients with a current high frequency of seizures and 21 sex- and age-matched health control (HC) who reported no history of neurological or psychiatric disorders and visited the hospital for routine physical examinations were included. Each included subject underwent a 2-h and 19-channel video EEG examination. For AE patients, five epochs of 10-s EEG data in inter-ictal, pre-ictal, and post-ictal states were collected. For the HC group, five 10-s resting-state EEG epochs were extracted. Functional independent components analysis (ICA) was carried out using the LORETA KEY tool. Results Compared with the resting-state EEG data of the HC group, the EEG data from AE patients during inter-ictal periods showed decreased alpha oscillations in regions involving the superior frontal gyrus (SFG) (BA11). From inter-ictal to pre-ictal, SFG (BA10) showed maximum decreased delta oscillations. Additionally, from pre-ictal to post-ictal, superior temporal gyrus (STG) (BA 22) presented maximum increased neural activity in the alpha band. Moreover, compared with inter-ictal EEG, post-ictal EEG showed significantly decreased theta activity in SFG (BA8). Conclusion The changes in SFG alpha oscillations are the key brain network differences between inter-ictal EEG of AE patients and resting-state EEG of HCs. The brain networks of EEG oscillatory during peri-ictal episodes are mainly involving SFG and STG. Our study suggests that altered EEG brain networks dynamics exist between inter-ictal EEG of AE patients and resting-state EEG of HCs and between pre- and post-ictal EEG in AE patients.
Collapse
Affiliation(s)
- Zhiye Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Jialing Huang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Wei Wei
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Sili Jiang
- Department of Neurology, Suining Central Hospital, Suining, China
| | - Hong Liu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| |
Collapse
|
9
|
Müller V. Neural Synchrony and Network Dynamics in Social Interaction: A Hyper-Brain Cell Assembly Hypothesis. Front Hum Neurosci 2022; 16:848026. [PMID: 35572007 PMCID: PMC9101304 DOI: 10.3389/fnhum.2022.848026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Mounting neurophysiological evidence suggests that interpersonal interaction relies on continual communication between cell assemblies within interacting brains and continual adjustments of these neuronal dynamic states between the brains. In this Hypothesis and Theory article, a Hyper-Brain Cell Assembly Hypothesis is suggested on the basis of a conceptual review of neural synchrony and network dynamics and their roles in emerging cell assemblies within the interacting brains. The proposed hypothesis states that such cell assemblies can emerge not only within, but also between the interacting brains. More precisely, the hyper-brain cell assembly encompasses and integrates oscillatory activity within and between brains, and represents a common hyper-brain unit, which has a certain relation to social behavior and interaction. Hyper-brain modules or communities, comprising nodes across two or several brains, are considered as one of the possible representations of the hypothesized hyper-brain cell assemblies, which can also have a multidimensional or multilayer structure. It is concluded that the neuronal dynamics during interpersonal interaction is brain-wide, i.e., it is based on common neuronal activity of several brains or, more generally, of the coupled physiological systems including brains.
Collapse
Affiliation(s)
- Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
10
|
Aung T, Tenney JR, Bagić AI. Contributions of Magnetoencephalography to Understanding Mechanisms of Generalized Epilepsies: Blurring the Boundary Between Focal and Generalized Epilepsies? Front Neurol 2022; 13:831546. [PMID: 35572923 PMCID: PMC9092024 DOI: 10.3389/fneur.2022.831546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/08/2022] [Indexed: 12/31/2022] Open
Abstract
According to the latest operational 2017 ILAE classification of epileptic seizures, the generalized epileptic seizure is still conceptualized as "originating at some point within and rapidly engaging, bilaterally distributed networks." In contrast, the focal epileptic seizure is defined as "originating within networks limited to one hemisphere." Hence, one of the main concepts of "generalized" and "focal" epilepsy comes from EEG descriptions before the era of source localization, and a presumed simultaneous bilateral onset and bi-synchrony of epileptiform discharges remains a hallmark for generalized seizures. Current literature on the pathophysiology of generalized epilepsy supports the concept of a cortical epileptogenic focus triggering rapidly generalized epileptic discharges involving intact corticothalamic and corticocortical networks, known as the cortical focus theory. Likewise, focal epilepsy with rich connectivity can give rise to generalized spike and wave discharges resulting from widespread bilateral synchronization. Therefore, making this key distinction between generalized and focal epilepsy may be challenging in some cases, and for the first time, a combined generalized and focal epilepsy is categorized in the 2017 ILAE classification. Nevertheless, treatment options, such as the choice of antiseizure medications or surgical treatment, are the reason behind the importance of accurate epilepsy classification. Over the past several decades, plentiful scientific research on the pathophysiology of generalized epilepsy has been conducted using non-invasive neuroimaging and postprocessing of the electromagnetic neural signal by measuring the spatiotemporal and interhemispheric latency of bi-synchronous or generalized epileptiform discharges as well as network analysis to identify diagnostic and prognostic biomarkers for accurate diagnosis of the two major types of epilepsy. Among all the advanced techniques, magnetoencephalography (MEG) and multiple other methods provide excellent temporal and spatial resolution, inherently suited to analyzing and visualizing the propagation of generalized EEG activities. This article aims to provide a comprehensive literature review of recent innovations in MEG methodology using source localization and network analysis techniques that contributed to the literature of idiopathic generalized epilepsy in terms of pathophysiology and clinical prognosis, thus further blurring the boundary between focal and generalized epilepsy.
Collapse
Affiliation(s)
- Thandar Aung
- Department of Neurology, University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Jeffrey R. Tenney
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Anto I. Bagić
- Department of Neurology, University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| |
Collapse
|
11
|
Royer J, Bernhardt BC, Larivière S, Gleichgerrcht E, Vorderwülbecke BJ, Vulliémoz S, Bonilha L. Epilepsy and brain network hubs. Epilepsia 2022; 63:537-550. [DOI: 10.1111/epi.17171] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Boris C. Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Ezequiel Gleichgerrcht
- Department of Neurology Medical University of South Carolina Charleston South Carolina USA
| | - Bernd J. Vorderwülbecke
- EEG and Epilepsy Unit University Hospitals and Faculty of Medicine Geneva Geneva Switzerland
- Department of Neurology Epilepsy Center Berlin‐Brandenburg Charité–Universitätsmedizin Berlin Berlin Germany
| | - Serge Vulliémoz
- EEG and Epilepsy Unit University Hospitals and Faculty of Medicine Geneva Geneva Switzerland
| | | |
Collapse
|