1
|
Kurek I, Epstein KH. Cannabis-Responsive Biomarkers: Answering the Call for Critical Appraisal of Medical Cannabis. Anesth Analg 2024; 139:e5-e6. [PMID: 38885403 DOI: 10.1213/ane.0000000000007034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
|
2
|
Sahli J, Grossoehme D, Friebert S. Experience With Medical Marijuana in a Pediatric Palliative Care Clinic: Case Report. J Pain Symptom Manage 2024; 67:e361-e365. [PMID: 38278190 DOI: 10.1016/j.jpainsymman.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Children receiving palliative care have life-limiting or life-threatening conditions, which include symptoms ranging from unpleasant to intolerable suffering. We describe three diverse cases of medical marijuana within ambulatory pediatric palliative care, highlighting use for spasticity, refractory seizures, and cancer-related symptoms. Included are caregiver perspectives of their child's experience with medical marijuana. This population has high potential for positive effects from medical marijuana therapy, particularly for maximizing quality of life.
Collapse
Affiliation(s)
- Jenna Sahli
- Haslinger Family Pediatric Palliative Care Center (J.S., D.G., S.F.), Akron Children's Hospital, Akron, OH, USA
| | - Daniel Grossoehme
- Haslinger Family Pediatric Palliative Care Center (J.S., D.G., S.F.), Akron Children's Hospital, Akron, OH, USA; Rebecca D. Considine Research Institute (D.G., S.F.), Akron Children's Hospital, Akron, OH, USA.
| | - Sarah Friebert
- Haslinger Family Pediatric Palliative Care Center (J.S., D.G., S.F.), Akron Children's Hospital, Akron, OH, USA; Rebecca D. Considine Research Institute (D.G., S.F.), Akron Children's Hospital, Akron, OH, USA
| |
Collapse
|
3
|
Fey JMH, Bikker FJ, Hesse D. Saliva Collection Methods Among Children and Adolescents: A Scoping Review. Mol Diagn Ther 2024; 28:15-26. [PMID: 37950136 PMCID: PMC10786738 DOI: 10.1007/s40291-023-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Saliva can be used for screening and diagnostic purposes. Although multiple saliva collection methods are available, their use in children can be limited due to lack of cooperation, developmental stage, and age. The aim of this scoping review was to comprehensively appraise the different methods of saliva collection among both children and adolescents by assessing the available scientific literature. METHODS A literature search was performed using the databases PubMed, Embase, and Web of Science. Eligible studies on saliva collection methods among children and adolescents were included for this review. RESULTS The literature search identified 249 eligible articles, of which 205 had a cross-sectional study design. Four distinct saliva collection methods have surfaced: the drooling method, the absorption method, the spitting method, and the suction method. Among infants or children under the age of 6 years, the suction and absorption methods were most preferred. The drooling and spitting methods were only applicable among children above the age of 3 years. When children were not willing to cooperate, the absorption method was most feasible. In adolescents and older children, no specific method was found to be preferred over another method. CONCLUSION Overall, saliva collection is well tolerated by children and adolescents, with the absorption and suction methods being preferred with young and uncooperative children.
Collapse
Affiliation(s)
- Juliette M H Fey
- Department of Paediadtric Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Daniela Hesse
- Department of Paediadtric Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Jian J, He D, Gao S, Tao X, Dong X. Pharmacokinetics in Pharmacometabolomics: Towards Personalized Medication. Pharmaceuticals (Basel) 2023; 16:1568. [PMID: 38004434 PMCID: PMC10675232 DOI: 10.3390/ph16111568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Indiscriminate drug administration may lead to drug therapy results with varying effects on patients, and the proposal of personalized medication can help patients to receive effective drug therapy. Conventional ways of personalized medication, such as pharmacogenomics and therapeutic drug monitoring (TDM), can only be implemented from a single perspective. The development of pharmacometabolomics provides a research method for the realization of precise drug administration, which integrates the environmental and genetic factors, and applies metabolomics technology to study how to predict different drug therapeutic responses of organisms based on baseline metabolic levels. The published research on pharmacometabolomics has achieved satisfactory results in predicting the pharmacokinetics, pharmacodynamics, and the discovery of biomarkers of drugs. Among them, the pharmacokinetics related to pharmacometabolomics are used to explore individual variability in drug metabolism from the level of metabolism of the drugs in vivo and the level of endogenous metabolite changes. By searching for relevant literature with the keyword "pharmacometabolomics" on the two major literature retrieval websites, PubMed and Web of Science, from 2006 to 2023, we reviewed articles in the field of pharmacometabolomics that incorporated pharmacokinetics into their research. This review explains the therapeutic effects of drugs on the body from the perspective of endogenous metabolites and pharmacokinetic principles, and reports the latest advances in pharmacometabolomics related to pharmacokinetics to provide research ideas and methods for advancing the implementation of personalized medication.
Collapse
Affiliation(s)
- Jingai Jian
- School of Medicine, Shanghai University, Shanghai 200444, China; (J.J.); (D.H.)
| | - Donglin He
- School of Medicine, Shanghai University, Shanghai 200444, China; (J.J.); (D.H.)
| | - Songyan Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
| | - Xia Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai 200444, China; (J.J.); (D.H.)
| |
Collapse
|
5
|
Quillet JC, Siani-Rose M, McKee R, Goldstein B, Taylor M, Kurek I. A machine learning approach for understanding the metabolomics response of children with autism spectrum disorder to medical cannabis treatment. Sci Rep 2023; 13:13022. [PMID: 37608004 PMCID: PMC10444802 DOI: 10.1038/s41598-023-40073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition impacting behavior, communication, social interaction and learning abilities. Medical cannabis (MC) treatment can reduce clinical symptoms in individuals with ASD. Cannabis-responsive biomarkers are metabolites found in saliva that change in response to MC treatment. Previously we showed levels of these biomarkers in children with ASD successfully treated with MC shift towards the physiological levels detected in typically developing (TD) children, and potentially can quantify the impact. Here, we tested for the first time the capabilities of machine learning techniques applied to our dynamic, high-resolution and rich feature dataset of cannabis-responsive biomarkers from a limited number of children with ASD before and after MC treatment and a TD group to identify: (1) biomarkers distinguishing ASD and TD groups; (2) non-cannabinoid plant molecules with synergistic effects; and (3) biomarkers associated with specific cannabinoids. We found: (1) lysophosphatidylethanolamine can distinguish between ASD and TD groups; (2) novel phytochemicals contribute to the therapeutic effects of MC treatment by inhibition of acetylcholinesterase; and (3) THC- and CBD-associated cannabis-responsive biomarkers are two distinct groups, while CBG is associated with some biomarkers from both groups.
Collapse
Affiliation(s)
| | - Michael Siani-Rose
- Cannformatics, Inc., 3859 Cesar Chavez St, San Francisco, CA, 94131, USA
| | - Robert McKee
- Cannformatics, Inc., 3859 Cesar Chavez St, San Francisco, CA, 94131, USA
| | - Bonni Goldstein
- Cannformatics, Inc., 3859 Cesar Chavez St, San Francisco, CA, 94131, USA
| | - Myiesha Taylor
- Cannformatics, Inc., 3859 Cesar Chavez St, San Francisco, CA, 94131, USA
| | - Itzhak Kurek
- Cannformatics, Inc., 3859 Cesar Chavez St, San Francisco, CA, 94131, USA.
| |
Collapse
|
6
|
Montagner PSS, Medeiros W, da Silva LCR, Borges CN, Brasil-Neto J, de Deus Silva Barbosa V, Caixeta FV, Malcher-Lopes R. Individually tailored dosage regimen of full-spectrum Cannabis extracts for autistic core and comorbid symptoms: a real-life report of multi-symptomatic benefits. Front Psychiatry 2023; 14:1210155. [PMID: 37671290 PMCID: PMC10475955 DOI: 10.3389/fpsyt.2023.1210155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023] Open
Abstract
Autism Spectrum Disorders (ASD) may significantly impact the well-being of patients and their families. The therapeutic use of cannabis for ASD has gained interest due to its promising results and low side effects, but a consensus on treatment guidelines is lacking. In this study, we conducted a retrospective analysis of 20 patients with autistic symptoms who were treated with full-spectrum cannabis extracts (FCEs) in a response-based, individually-tailored dosage regimen. The daily dosage and relative proportions of cannabidiol (CBD) and tetrahydrocannabinol (THC) were adjusted based on treatment results following periodic clinical evaluation. Most patients (80%) were treated for a minimum of 6 months. We have used a novel, detailed online patient- or caregiver-reported outcome survey that inquired about core and comorbid symptoms, and quality of life. We also reviewed patients' clinical files, and no individual condition within the autistic spectrum was excluded. This real-life approach enabled us to gain a clearer appraisal of the ample scope of benefits that FCEs can provide for ASD patients and their families. Eighteen patients started with a CBD-rich FCE titrating protocol, and in three of them, the CBD-rich (CBD-dominant) FCE was gradually complemented with low doses of a THC-rich (THC-dominant) FCE based on observed effects. Two other patients have used throughout treatment a blend of two FCEs, one CBD-rich and the other THC-rich. The outcomes were mainly positive for most symptoms, and only one patient from each of the two above-mentioned situations displayed important side effects one who has used only CBD-rich FCE throughout the treatment, and another who has used a blend of CBD-Rich and THC-rich FCEs. Therefore, after FCE treatment, 18 out of 20 patients showed improvement in most core and comorbid symptoms of autism, and in quality of life for patients and their families. For them, side effects were mild and infrequent. Additionally, we show, for the first time, that allotriophagy (Pica) can be treated by FCEs. Other medications were reduced or completely discontinued in most cases. Based on our findings, we propose guidelines for individually tailored dosage regimens that may be adapted to locally available qualified FCEs and guide further clinical trials.
Collapse
Affiliation(s)
| | - Wesley Medeiros
- Laboratory of Neuroscience and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Leandro Cruz Ramires da Silva
- Clinical Hospital, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Brazilian Association of Medical Cannabis Patients, Ama-Me, Belo Horizonte, Brazil
| | - Clarissa Nogueira Borges
- Specialized Educational Care Division for Gifted Students of the Department of Education of the Federal District, Brasília, Brazil
| | | | - Vinícius de Deus Silva Barbosa
- Medical Cannabis Center–Syrian-Lebanese Hospital, São Paulo, Brazil
- National Association for Inclusion of the Autistic People, São Paulo, Brazil
| | - Fabio V. Caixeta
- Laboratory of Neuroscience and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Renato Malcher-Lopes
- Laboratory of Neuroscience and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| |
Collapse
|
7
|
Siani-Rose M, McKee R, Cox S, Goldstein B, Abrams D, Taylor M, Kurek I. The Potential of Salivary Lipid-Based Cannabis-Responsive Biomarkers to Evaluate Medical Cannabis Treatment in Children with Autism Spectrum Disorder. Cannabis Cannabinoid Res 2023; 8:642-656. [PMID: 35343818 DOI: 10.1089/can.2021.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Autism spectrum disorder (ASD) is a group of heterogeneous neurodevelopmental conditions affecting social communication and social interaction. Medical cannabis (MC) treatment shows promising results as an approach to reduce behavioral difficulties, as determined mainly by subjective observations. We have recently shown the potential of cannabis-responsive biomarkers detected in saliva of children with ASD to objectively quantify the impact of successful MC treatment using a metabolomics approach. Since the pathology of ASD is associated with abnormal lipid metabolism, we used lipidomics on the same samples to (1) expand the repertoire of cannabis-responsive biomarkers and (2) provide preliminary insight into the role of MC on lipid metabolism. Materials and Methods: Saliva samples collected from children with ASD (n=15) treated with MC (both before and at the time of maximal impact of treatment) and an age-matched group of typically developing (TD) children (n=9) were subjected to untargeted lipidomics. The study was observational. Each child from the ASD group was receiving a unique individualized MC treatment regimen using off-the-shelf products as permitted by California law under physician supervision for at least 1 year. Doses of tetrahydrocannabinol (THC) ranged from 0.05 to 50 mg and cannabidiol (CBD) from 7.5 to 200 mg per treatment. The ASD group was evaluated for signs of improvement using parental brief Likert scale surveys. Results: Twenty-two potential lipid-based cannabis-responsive biomarkers exhibiting a shift toward the TD physiological levels in children with ASD after MC treatment were identified. Members from all five lipid subclasses known to be present in saliva were characterized. Preliminary lipid association network analysis suggests involvement of two subnetworks previously linked to (1) inflammation and/or redox regulation and (2) oxidative stress. The significant changes in sphingomyelin in this study and in N-acetyl-aspartate (NAA) previously detected in the metabolomics analysis of the same saliva samples may indicate a role of MC in neuron function. Conclusions: Our findings suggest that lipid metabolites in saliva can potentially serve as cannabis-responsive biomarkers and objectively quantify the impact of MC treatment, and indicate a possible mechanism of action for MC. This preliminary study requires further investigation with a larger population and appropriate clinical trial monitoring.
Collapse
Affiliation(s)
| | - Robert McKee
- Cannformatics, Inc., San Francisco, California, USA
| | - Stephany Cox
- Cannformatics, Inc., San Francisco, California, USA
| | | | | | | | - Itzhak Kurek
- Cannformatics, Inc., San Francisco, California, USA
| |
Collapse
|