1
|
Goodman MT, Lombardi C, Torrens A, Bresee C, Saloman JL, Li L, Yang Y, Fisher WE, Fogel EL, Forsmark CE, Conwell DL, Hart PA, Park WG, Topazian M, Vege SS, Van Den Eeden SK, Bellin MD, Andersen DK, Serrano J, Yadav D, Pandol SJ, Piomelli D. Association of Serum Endocannabinoid Levels with Pancreatitis and Pancreatitis-Related Pain. Cannabis Cannabinoid Res 2025; 10:60-70. [PMID: 39291350 PMCID: PMC11947650 DOI: 10.1089/can.2024.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Background and Aims: This investigation examined the association of pancreatitis and pancreatitis-related pain with serum levels of two endocannabinoid molecules such as anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and two paracannabinoid molecules such as oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). Methods: A case-control study was conducted within the Prospective Evaluation of Chronic Pancreatitis for Epidemiological and Translational Studies, including participants with no pancreas disease (N = 56), chronic abdominal pain of suspected pancreatic origin or indeterminate chronic pancreatitis (CP) (N = 22), acute pancreatitis (N = 33), recurrent acute pancreatitis (N = 57), and definite CP (N = 63). Results: Circulating AEA concentrations were higher in women than in men (p = 0.0499), and PEA concentrations were higher in obese participants than those who were underweight/normal or overweight (p = 0.003). Asymptomatic controls with no pancreatic disease had significantly (p = 0.03) lower concentrations of AEA compared with all disease groups combined. The highest concentrations of AEA were observed in participants with acute pancreatitis, followed by those with recurrent acute pancreatitis, chronic abdominal pain/indeterminant CP, and definite CP. Participants with pancreatitis reporting abdominal pain in the past year had significantly (p = 0.04) higher concentrations of AEA compared with asymptomatic controls. Levels of 2-AG were significantly lower (p = 0.02) among participants reporting abdominal pain in the past week, and pain intensity was inversely associated with concentrations of 2-AG and OEA. Conclusions: Endocannabinoid levels may be associated with stage of pancreatitis, perhaps through activation of the CB1 receptor. Validation of our findings would support the investigation of novel therapeutics, including cannabinoid receptor-1 antagonists, in this patient population.
Collapse
Affiliation(s)
- Marc T. Goodman
- Prevention and Control Program, Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Christina Lombardi
- Prevention and Control Program, Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alexa Torrens
- Department and Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Catherine Bresee
- Department of Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jami L. Saloman
- Center for Pain Research, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Liang Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yunlong Yang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - William E. Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Evan L. Fogel
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Christopher E. Forsmark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida, USA
| | - Darwin L. Conwell
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Phil A. Hart
- Division of Gastroenterology, Hepatology, & Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Walter G. Park
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, USA
| | | | - Santhi S. Vege
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Melena D. Bellin
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Dana K. Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jose Serrano
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dhiraj Yadav
- Department of Medicine Division of Gastroenterology, Hepatology & Nutrition University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Stephen J. Pandol
- Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Daniele Piomelli
- Department and Anatomy and Neurobiology, University of California, Irvine, California, USA
- Department of Biological Chemistry, University of California, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| | - on behalf of the Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer (CPDPC)
- Prevention and Control Program, Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department and Anatomy and Neurobiology, University of California, Irvine, California, USA
- Department of Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Center for Pain Research, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida, USA
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Division of Gastroenterology, Hepatology, & Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, USA
- Mayo Clinic, Rochester, Minnesota, USA
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Medicine Division of Gastroenterology, Hepatology & Nutrition University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biological Chemistry, University of California, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| |
Collapse
|
2
|
Murray CH, Javanbakht M, Cho GD, Gorbach PM, Fulcher JA, Cooper ZD. Changes in Immune-Related Biomarkers and Endocannabinoids as a Function of Frequency of Cannabis Use in People Living With and Without HIV. Cannabis Cannabinoid Res 2024; 9:e897-e906. [PMID: 37093248 PMCID: PMC11295663 DOI: 10.1089/can.2022.0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Background: Cannabis use is common among people living with HIV (PLWH). Some observational studies of PLWH have linked cannabis use to lower immune markers; however, this is yet to be confirmed. In addition, whether HIV affects the endogenous cannabinoid system has not been studied. Our objective was to examine changes in immune-related biomarkers and endocannabinoids as a function of cannabis use frequency in people living with and without HIV. Materials and Methods: Data were obtained from a longitudinal study of men who have sex with men living in Los Angeles with, or at risk for, HIV. By design, half were PLWH. Those eligible for the parent study were willing and able to return for follow-up every 6 months. Those eligible for inclusion in this study reported varying levels of current cannabis use at follow-up. Specifically, one visit corresponded to a period of daily use and another to a period of infrequent use (weekly, monthly, or less than monthly). Banked serum from all eligible participants was analyzed for immune-related biomarkers, endocannabinoids, and paracannabinoids. Results: The analysis included 36 men, 19 of whom were PLWH. PLWH reported greater lifetime methamphetamine or amphetamine use (68% vs. 0%) and current cigarette use (55% vs. 20%) than people without HIV. Serum levels of HIV-related immune biomarkers including tumor necrosis factor receptor 2 (TNFR2; p=0.013) and CD27 (p=0.004) were greater in PLWH, alongside lower anandamide (AEA) (F1,34=5.337, p=0.027) and oleoylethanolamide (OEA) (F1,34=8.222, p=0.007) levels relative to people without HIV. Frequency of cannabis use did not impact the serum analytes in our study. Conclusions: Higher levels of TNFR2 and CD27 and lower levels of AEA and OEA in PLWH underscore the role of the TNF/TNFR superfamily in HIV, while highlighting a new role for the enzymatic activity of fatty acid amide hydrolase (the enzyme that hydrolyzes AEA and OEA) in HIV. Findings that cannabis frequency did not impact the immune phenotype may not generalize to other populations of PLWH. Additional work is required to further clarify the relationship between immune markers and endocannabinoids as a function of cannabis use frequency in PLWH. ClinicalTrials.gov ID: NCT01201083.
Collapse
Affiliation(s)
- Conor H. Murray
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Marjan Javanbakht
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Grace D. Cho
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Pamina M. Gorbach
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jennifer A. Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Ziva D. Cooper
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
3
|
de Fátima Dos Santos Sampaio M, de Paiva YB, Sampaio TB, Pereira MG, Coimbra NC. Therapeutic applicability of cannabidiol and other phytocannabinoids in epilepsy, multiple sclerosis and Parkinson's disease and in comorbidity with psychiatric disorders. Basic Clin Pharmacol Toxicol 2024; 134:574-601. [PMID: 38477419 DOI: 10.1111/bcpt.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Studies have demonstrated the neuroprotective effect of cannabidiol (CBD) and other Cannabis sativa L. derivatives on diseases of the central nervous system caused by their direct or indirect interaction with endocannabinoid system-related receptors and other molecular targets, such as the 5-HT1A receptor, which is a potential pharmacological target of CBD. Interestingly, CBD binding with the 5-HT1A receptor may be suitable for the treatment of epilepsies, parkinsonian syndromes and amyotrophic lateral sclerosis, in which the 5-HT1A serotonergic receptor plays a key role. The aim of this review was to provide an overview of cannabinoid effects on neurological disorders, such as epilepsy, multiple sclerosis and Parkinson's diseases, and discuss their possible mechanism of action, highlighting interactions with molecular targets and the potential neuroprotective effects of phytocannabinoids. CBD has been shown to have significant therapeutic effects on epilepsy and Parkinson's disease, while nabiximols contribute to a reduction in spasticity and are a frequent option for the treatment of multiple sclerosis. Although there are multiple theories on the therapeutic potential of cannabinoids for neurological disorders, substantially greater progress in the search for strong scientific evidence of their pharmacological effectiveness is needed.
Collapse
Affiliation(s)
- Maria de Fátima Dos Santos Sampaio
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Center for Agropastoralism Sciences and Technology (CCTA), North Fluminense State University (UENF), Rio de Janeiro, Brazil
- Psychobiology Division, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
| | - Yara Bezerra de Paiva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Psychobiology Division, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Center (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Tuane Bazanella Sampaio
- Pharmacology Post-Graduation Program, Health Sciences Centre, Santa Maria Federal University, Santa Maria, Brazil
| | - Messias Gonzaga Pereira
- Center for Agropastoralism Sciences and Technology (CCTA), North Fluminense State University (UENF), Rio de Janeiro, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Psychobiology Division, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Center (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
4
|
Clément P, Schlage WK, Hoeng J. Recent advances in the development of portable technologies and commercial products to detect Δ 9-tetrahydrocannabinol in biofluids: a systematic review. J Cannabis Res 2024; 6:9. [PMID: 38414071 PMCID: PMC10898188 DOI: 10.1186/s42238-024-00216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The primary components driving the current commercial fascination with cannabis products are phytocannabinoids, a diverse group of over 100 lipophilic secondary metabolites derived from the cannabis plant. Although numerous phytocannabinoids exhibit pharmacological effects, the foremost attention has been directed towards Δ9-tetrahydrocannabinol (THC) and cannabidiol, the two most abundant phytocannabinoids, for their potential human applications. Despite their structural similarity, THC and cannabidiol diverge in terms of their psychotropic effects, with THC inducing notable psychological alterations. There is a clear need for accurate and rapid THC measurement methods that offer dependable, readily accessible, and cost-effective analytical information. This review presents a comprehensive view of the present state of alternative technologies that could potentially facilitate the creation of portable devices suitable for on-site usage or as personal monitors, enabling non-intrusive THC measurements. METHOD A literature survey from 2017 to 2023 on the development of portable technologies and commercial products to detect THC in biofluids was performed using electronic databases such as PubMed, Scopus, and Google Scholar. A systematic review of available literature was conducted using Preferred Reporting Items for Systematic. Reviews and Meta-analysis (PRISMA) guidelines. RESULTS Eighty-nine studies met the selection criteria. Fifty-seven peer-reviewed studies were related to the detection of THC by conventional separation techniques used in analytical laboratories that are still considered the gold standard. Studies using optical (n = 12) and electrochemical (n = 13) portable sensors and biosensors were also identified as well as commercially available devices (n = 7). DISCUSSION The landscape of THC detection technology is predominantly shaped by immunoassay tests, owing to their established reliability. However, these methods have distinct drawbacks, particularly for quantitative analysis. Electrochemical sensing technology holds great potential to overcome the challenges of quantification and present a multitude of advantages, encompassing the possibility of miniaturization and diverse modifications to amplify sensitivity and selectivity. Nevertheless, these sensors have considerable limitations, including non-specific interactions and the potential interference of compounds and substances existing in biofluids. CONCLUSION The foremost challenge in THC detection involves creating electrochemical sensors that are both stable and long-lasting while exhibiting exceptional selectivity, minimal non-specific interactions, and decreased susceptibility to matrix interferences. These aspects need to be resolved before these sensors can be successfully introduced to the market.
Collapse
Affiliation(s)
- Pierrick Clément
- Centre Suisse d'Electronique Et de Microtechnique SA (CSEM), Rue Jaquet-Droz 1, 2002, Neuchâtel, Switzerland.
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Strasse 21, 51429, Bergisch Gladbach, Germany
| | - Julia Hoeng
- Biology Consultant, Max-Baermann-Strasse 21, 51429, Bergisch Gladbach, Germany
- Vectura Fertin Pharma, C/O Jagotec AG, Messeplatz 10, 4058, Basel, Switzerland
| |
Collapse
|
5
|
Singh Cham P, Kotwal P, Sharma K, Dhiman S, Singh L, Pratap Singh V, Kumar A, Nandi U, Pal Singh P. Cannabidiol-Based Prodrugs: Synthesis and Bioevaluation. ACS Med Chem Lett 2024; 15:221-229. [PMID: 38352838 PMCID: PMC10860190 DOI: 10.1021/acsmedchemlett.3c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Cannabidiol (CBD 1) is a nonpsychotic cannabinoid-based drug approved by the U.S. FDA for treating refractory epilepsy, namely, Lennox-Gastaut and Dravet syndrome. However, its low aqueous solubility and oral bioavailability are compensated by administering high doses, and there is an increased demand for conjugates with improved properties. In this direction, the present work is focused on synthesizing CBD-based prodrugs to address the issue of poor solubility and oral bioavailability. Several CBD-based prodrugs were synthesized and studied in a battery of assays: viz, release kinetic (ex vivo), solubility (in vitro), chemical stability (in vitro), plasma stability (ex vivo), pharmacokinetics (in vivo), and efficacy studies (in vivo). Among the synthesized prodrugs, the morpholinyl CBD-based prodrugs 3a and 3aa showed good release behavior, stability, better solubility, and a plasma profile. Moreover, prodrug candidate 3aa showed better therapeutic efficacy. The present study identifies CBD-based prodrugs with improved physiochemical properties and oral exposure.
Collapse
Affiliation(s)
- Pankaj Singh Cham
- Natural
Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pankul Kotwal
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuhu Sharma
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit Dhiman
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Lakhvinder Singh
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Varun Pratap Singh
- Natural
Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajay Kumar
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Utpal Nandi
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parvinder Pal Singh
- Natural
Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Boachie N, Gaudette E, Bazinet RP, Lin L, Tyndale RF, Mansouri E, Huestis MA, Tong J, Le Foll B, Kish SJ, George TP, Boileau I. Circulating Endocannabinoids and N-Acylethanolamines in Individuals with Cannabis Use Disorder-Preliminary Findings. Brain Sci 2023; 13:1375. [PMID: 37891745 PMCID: PMC10605789 DOI: 10.3390/brainsci13101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Endocannabinoids and related N-acylethanolamines (NAEs) are bioactive lipids with important physiological functions and putative roles in mental health and addictions. Although chronic cannabis use is associated with endocannabinoid system changes, the status of circulating endocannabinoids and related NAEs in people with cannabis use disorder (CUD) is uncertain. METHODS Eleven individuals with CUD and 54 healthy non-cannabis using control participants (HC) provided plasma for measurement by high-performance liquid chromatography-mass spectrometry of endocannabinoids (2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)) and related NAE fatty acids (N-docosahexaenoylethanolamine (DHEA) and N-oleoylethanolamine (OEA)). Participants were genotyped for the functional gene variant of FAAH (rs324420, C385A) which may affect concentrations of AEA as well as other NAEs (OEA, DHEA). RESULTS In overnight abstinent CUD, AEA, OEA and DHEA concentrations were significantly higher (31-40%; p < 0.05) and concentrations of the endocannabinoid 2-AG were marginally elevated (55%, p = 0.13) relative to HC. There were no significant correlations between endocannabinoids/NAE concentrations and cannabis analytes, self-reported cannabis use frequency or withdrawal symptoms. DHEA concentration was inversely related with marijuana craving (r = -0.86; p = 0.001). Genotype had no significant effect on plasma endocannabinoids/NAE concentrations. CONCLUSIONS Our preliminary findings, requiring replication, might suggest that activity of the endocannabinoid system is elevated in chronic cannabis users. It is unclear whether this elevation is a compensatory response or a predating state. Studies examining endocannabinoids and NAEs during prolonged abstinence as well as the potential role of DHEA in craving are warranted.
Collapse
Affiliation(s)
- Nadia Boachie
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Erin Gaudette
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Richard P. Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Lin Lin
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Anatomy and Neurobiology, Faculty of Medicine, University of California, Irvine, CA 92697, USA
| | - Rachel F. Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Esmaeil Mansouri
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Marilyn A. Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Severna Park, Philadelphia, PA 19144, USA
| | - Junchao Tong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
| | - Bernard Le Foll
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Addictions Division and Institute of Mental Health Policy and Research, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Departments of Family and Community Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, ON L9M 1G3, Canada
| | - Stephen J. Kish
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Tony P. George
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Addictions Division and Institute of Mental Health Policy and Research, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada; (N.B.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Addictions Division and Institute of Mental Health Policy and Research, Centre for Addiction and Mental Health, Toronto, ON N6B 1Y6, Canada
| |
Collapse
|