1
|
Urso L, Filippi L. Phosphorus-32 microparticles for locally advanced pancreatic cancer: how and when? Expert Rev Med Devices 2024:1-4. [PMID: 38700111 DOI: 10.1080/17434440.2024.2352009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Affiliation(s)
- Luca Urso
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Luca Filippi
- Nuclear Medicine Unit, Department of Oncohaematology, Fondazione PTV Policlinico Tor Vergata University Hospital, Rome, Italy
| |
Collapse
|
2
|
Xu YP, Yang M. Advancement in treatment and diagnosis of pancreatic cancer with radiopharmaceuticals. World J Gastrointest Oncol 2016; 8:165-172. [PMID: 26909131 PMCID: PMC4753167 DOI: 10.4251/wjgo.v8.i2.165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/30/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer (PC) is a major health problem. Conventional imaging modalities show limited accuracy for reliable assessment of the tumor. Recent researches suggest that molecular imaging techniques with tracers provide more biologically relevant information and are benefit for the diagnosis of the cancer. In addition, radiopharmaceuticals also play more important roles in treatment of the disease. This review summaries the advancement of the radiolabeled compounds in the theranostics of PC.
Collapse
|
3
|
Cheng Y, Kiess AP, Herman JM, Pomper MG, Meltzer SJ, Abraham JM. Phosphorus-32, a clinically available drug, inhibits cancer growth by inducing DNA double-strand breakage. PLoS One 2015; 10:e0128152. [PMID: 26030880 PMCID: PMC4450878 DOI: 10.1371/journal.pone.0128152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/22/2015] [Indexed: 12/16/2022] Open
Abstract
Radioisotopes that emit electrons (beta particles), such as radioiodine, can effectively kill target cells, including cancer cells. Aqueous 32P[PO4] is a pure beta-emitter that has been used for several decades to treat non-malignant human myeloproliferative diseases. 32P[PO4] was directly compared to a more powerful pure beta-emitter, the clinically important 90Y isotope. In vitro, 32P[PO4] was more effective at killing cells than was the more powerful isotope 90Y (P ≤ 0.001) and also caused substantially more double-stranded DNA breaks than did 90Y. In vivo, a single low-dose intravenous dose of aqueous elemental 32P significantly inhibited tumor growth in the syngeneic murine cancer model (P ≤ 0.001). This effect is exerted by direct incorporation into nascent DNA chains, resulting in double-stranded breakage, a unique mechanism not duplicatable by other, more powerful electron-emitting radioisotopes. 32P[PO4] should be considered for human clinical trials as a potential novel anti-cancer drug.
Collapse
Affiliation(s)
- Yulan Cheng
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ana P. Kiess
- Department of Radiation Oncology and Molecular Radiation, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph M. Herman
- Department of Radiation Oncology and Molecular Radiation, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin G. Pomper
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Stephen J. Meltzer
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - John M. Abraham
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
4
|
Sun L, Zhu X, Xu L, Wang Z, Shao G, Zhao J. Antitumor effects of 32P-chromic-poly (L-lactide) brachytherapy in nude mice with human prostate cancer. Oncol Lett 2013; 6:687-692. [PMID: 24137391 PMCID: PMC3789100 DOI: 10.3892/ol.2013.1443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 06/05/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the antitumor effects and tissue distribution of 32P-chromic-poly (L-lactide) (32P-CP-PLLA) in nude mice with human prostate cancer. Tumor models were obtained by transplantation of PC-3M tumor cells into male BALB/c nude mice. Animals were randomly divided into control, 32P-chromic phosphate (32P-CP) colloid and 32P-CP-PLLA groups (all n=20). A series of indices were investigated, including apoptosis of tumor cells, rate of apoptosis, expression of caspase 3 and 8, biodistribution and intratumoral concentration of 32P-CP-PLLA, intensity of radioactivity, tumor volume and microvessel density (MVD). Highly concentrated radioactivity of 32P-CP-PLLA in the tumor mass was detected by single photon emission computed tomography (SPECT) scanning. The residual activities of the 32P-CP-PLLA and 32P-CP colloid groups were 3.02±0.32 and 1.76±0.31 MBq, respectively, on day 14 following treatment. The tumor inhibition rates were 67.24±3.55 and 55.92±7.65%, respectively (P<0.01). Necrotic changes, in conjunction with apoptosis, were observed in the treatment group. MVD values for the 32P-CP-PLLA and 32P-CP colloid groups were 28.24±10.07 and 36.15±11.06, respectively. 32P-CP-PLLA showed an excellent capacity for killing tumor cells, inducing apoptosis and inhibiting angiogenesis.
Collapse
Affiliation(s)
- Liujing Sun
- Department of Urinary Surgery, Changzhou No. 3 People's Hospital, Jiangsu 213000, P.R. China
| | | | | | | | | | | |
Collapse
|
5
|
Zhao J, Du G, Su Y, Shao G, Wang Z, Xu L. Preliminary study of the biodegradation and the correlation between in vitro and in vivo release of (32)P-chromic phosphate-poly(L-lactide) seeds. Cancer Biother Radiopharm 2013; 28:703-8. [PMID: 23806021 DOI: 10.1089/cbr.2013.1484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To investigate the drug release kinetic of (32)P-chromic phosphate-poly(L-lactide) ((32)P-CP-PLLA). METHODS (32)P-CP-PLLA were placed into physiological saline and H22 solid tumor mass, respectively. The weight loss rate and radioactivity release rate were evaluated. The release of the microparticles was evaluated using fitting curves. The correlation of the release of the microparticles between physiological saline and H22 solid tumor mass was analyzed. RESULTS Close correlation was noted in the release of the microparticles between physiological saline and H22 solid tumor mass. The Weibull equation showed the best fitting of (32)P-CP-PLLA in physiological saline. CONCLUSIONS The Weibull equation could be used for the predictive release of microparticles in vitro. The parameters obtained from the drug release kinetics could be used to estimate the dose of radiopharmaceuticals within the tumors and the surrounding tissues.
Collapse
Affiliation(s)
- Jun Zhao
- 1 Department of Nuclear Medicine, Changzhou No. 2 People's Hospital , Changzhou, China
| | | | | | | | | | | |
Collapse
|
6
|
Bult W, Kroeze SGC, Elschot M, Seevinck PR, Beekman FJ, de Jong HWAM, Uges DRA, Kosterink JGW, Luijten PR, Hennink WE, van het Schip AD, Bosch JLHR, Nijsen JFW, Jans JJM. Intratumoral administration of holmium-166 acetylacetonate microspheres: antitumor efficacy and feasibility of multimodality imaging in renal cancer. PLoS One 2013; 8:e52178. [PMID: 23320070 PMCID: PMC3540022 DOI: 10.1371/journal.pone.0052178] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/12/2012] [Indexed: 01/01/2023] Open
Abstract
Purpose The increasing incidence of small renal tumors in an aging population with comorbidities has stimulated the development of minimally invasive treatments. This study aimed to assess the efficacy and demonstrate feasibility of multimodality imaging of intratumoral administration of holmium-166 microspheres (166HoAcAcMS). This new technique locally ablates renal tumors through high-energy beta particles, while the gamma rays allow for nuclear imaging and the paramagnetism of holmium allows for MRI. Methods 166HoAcAcMS were administered intratumorally in orthotopic renal tumors (Balb/C mice). Post administration CT, SPECT and MRI was performed. At several time points (2 h, 1, 2, 3, 7 and 14 days) after MS administration, tumors were measured and histologically analyzed. Holmium accumulation in organs was measured using inductively coupled plasma mass spectrometry. Results 166HoAcAcMS were successfully administered to tumor bearing mice. A striking near-complete tumor-control was observed in 166HoAcAcMS treated mice (0.10±0.01 cm3 vs. 4.15±0.3 cm3 for control tumors). Focal necrosis and inflammation was present from 24 h following treatment. Renal parenchyma outside the radiated region showed no histological alterations. Post administration CT, MRI and SPECT imaging revealed clear deposits of 166HoAcAcMS in the kidney. Conclusions Intratumorally administered 166HoAcAcMS has great potential as a new local treatment of renal tumors for surgically unfit patients. In addition to strong cancer control, it provides powerful multimodality imaging opportunities.
Collapse
Affiliation(s)
- Wouter Bult
- Imaging Division, Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Hospital and Clinical Pharmacy, University Medical Center Groningen, Groningen, The Netherlands
| | - Stephanie G. C. Kroeze
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Experimental Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mattijs Elschot
- Imaging Division, Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter R. Seevinck
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Freek J. Beekman
- Milabs, Utrecht, The Netherlands
- Section Radiation Detection & Medical Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Hugo W. A. M. de Jong
- Imaging Division, Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Donald R. A. Uges
- Department of Hospital and Clinical Pharmacy, University Medical Center Groningen, Groningen, The Netherlands
| | - Jos G. W. Kosterink
- Department of Hospital and Clinical Pharmacy, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter R. Luijten
- Imaging Division, Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Alfred D. van het Schip
- Imaging Division, Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. L. H. Ruud Bosch
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. Frank W. Nijsen
- Imaging Division, Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| | - Judith J. M. Jans
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Experimental Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|