1
|
Maharati A, Moghbeli M. Role of microRNA-505 during tumor progression and metastasis. Pathol Res Pract 2024; 258:155344. [PMID: 38744001 DOI: 10.1016/j.prp.2024.155344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Late diagnosis of cancer in advanced stages due to the lack of screening methods is considered as the main cause of poor prognosis and high mortality rate among these patients. Therefore, it is necessary to investigate the molecular tumor biology in order to introduce biomarkers that can be used in cancer screening programs and early diagnosis. MicroRNAs (miRNAs) have key roles in regulation of the cellular pathophysiological processes. Due to the high stability of miRNAs in body fluids, they are widely used as the non-invasive tumor markers. According to the numerous reports about miR-505 deregulation in a wide range of cancers, we investigated the role of miR-505 during tumor progression. It was shown that miR-505 mainly has the tumor suppressor functions through the regulation of signaling pathways, chromatin remodeling, and cellular metabolism. This review has an effective role in introducing miR-505 as a suitable marker for the early cancer diagnosis.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Abstract
Sepsis, a systemic inflammatory response disease, is the most severe complication of infection and a deadly disease. High mobility group proteins (HMGs) are non-histone nuclear proteins binding nucleosomes and regulate chromosome architecture and gene transcription, which act as a potent pro-inflammatory cytokine involved in the delayed endotoxin lethality and systemic inflammatory response. HMGs increase in serum and tissues during infection, especially in sepsis. A growing number of studies have demonstrated HMGs are not only cytokines which can mediate inflammation, but also potential therapeutic targets in sepsis. To reduce sepsis-related mortality, a better understanding of HMGs is essential. In this review, we described the structure and function of HMGs, summarized the definition, epidemiology and pathophysiology of sepsis, and discussed the HMGs-related mechanisms in sepsis from the perspectives of non-coding RNAs (microRNA, long non-coding RNA, circular RNA), programmed cell death (apoptosis, necroptosis and pyroptosis), drugs and other pathophysiological aspects to provide new targets and ideas for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Guibin Liang
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhihui He
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Ma W, Zhao X, Gao Y, Yao X, Zhang J, Xu Q. Circular RNA circ_UBAP2 facilitates the progression of osteosarcoma by regulating microRNA miR-637/high-mobility group box (HMGB) 2 axis. Bioengineered 2022; 13:4411-4427. [PMID: 35114890 PMCID: PMC8974191 DOI: 10.1080/21655979.2022.2033447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Circular RNA circ_UBAP2 has been reported to be closely associated with various tumors. The present work focused on exploring the roles of circ_UBAP2 and its molecular mechanism in osteosarcoma (OS). Circ_UBAP2, miR-637, and high-mobility group box (HMGB) 2 levels in OS cells and tissues were detected by quantitative real-time polymerase chain reaction. The relationship between miR-637 and circ_UBAP2, as well as between miR-637 and HMGB2, was predicted and examined through bioinformatics analysis and luciferase reporter gene experiments. Moreover, OS cell growth, invasion, migration, and apoptosis were detected using the cell counting kit-8 (CCK-8), Transwell and flow cytometry assays, respectively. HMGB2 protein levels were measured using Western blotting. Xenograft tumor formation assay was also performed. Circ_UBAP2 showed high expression levels in OS tissues and cells, which was directly proportional to metastasis and clinical stage of OS. The overexpression of circ_UBAP2 enhanced the growth, invasion, and migration of OS cells, but suppressed their apoptosis. In contrast, circ_UBAP2 silencing had opposite effects. Furthermore, miR-637 served as a downstream target of circ_UBAP2, which played opposite roles to circ_UBAP2 in OS. More importantly, HMGB2 served as miR-637's downstream target. The xenograft experiments in nude mice also proved that knockdown of circ_UBAP2 could increase miR-637 expression, but decrease HMGB2 expression, thus alleviating OS progression. Mechanistically, circ_UBAP2 exerts a cancer-promoting effect on OS by downregulating miR-637 and upregulating the expression of HMGB2. Circ_UBAP2 plays a promoting role in OS, and the circ_UBAP2/miR-637/HMGB2 axis is involved in OS progression.
Collapse
Affiliation(s)
- Weiguo Ma
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| | - Xin Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yun Gao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| | - Xiaobin Yao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| | - Junhua Zhang
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| | - Qingxia Xu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| |
Collapse
|
4
|
Wen B, Wei YT, Zhao K. The role of high mobility group protein B3 (HMGB3) in tumor proliferation and drug resistance. Mol Cell Biochem 2021; 476:1729-1739. [PMID: 33428061 DOI: 10.1007/s11010-020-04015-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
The high mobility group protein B (HMGB) family (including HMGB1, HMGB2, HMGB3, and HMGB4) can regulate the mechanisms of DNA replication, transcription, recombination, and repair, and act as cytokines to mediate responses to infection, injury, and inflammation. HMGB1/2/3 has a high similarity in sequence and structure, while HMGB4 has no acidic C-terminal tail. Among them, HMGB3 can regulate the self-renewal and differentiation of normal hematopoietic stem cell population, but the decrease of its expression is easy to induce leukemia. Up-regulation of its expression promotes tumor development and chemotherapy resistance through a variety of mechanisms, and non-coding RNA can regulate to promote tumor cell proliferation, invasion, and migration and inhibit cancer cell apoptosis.
Collapse
Affiliation(s)
- Bin Wen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, P. R. China
| | - Ying-Ting Wei
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, P. R. China
| | - Kui Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, P. R. China.
| |
Collapse
|
5
|
Han X, Zhong S, Zhang P, Liu Y, Shi S, Wu C, Gao S. Identification of differentially expressed proteins and clinicopathological significance of HMGB2 in cervical cancer. Clin Proteomics 2021; 18:2. [PMID: 33407071 PMCID: PMC7789524 DOI: 10.1186/s12014-020-09308-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023] Open
Abstract
To investigate the complexity of proteomics in cervical cancer tissues, we used isobaric tags for relative and absolute quantitation (iTRAQ)-based mass spectrometry analysis on a panel of normal cervical tissues (N), high-grade squamous intraepithelial lesion tissues (HSIL) and cervical cancer tissues (CC). Total 72 differentially expressed proteins were identified both in CC vs N and CC vs HSIL. The expression of HMGB2 was markedly higher in CC than that in HSIL and N. High HMGB2 expression was significantly correlated with primary tumor size, invasion and tumor stage. The up-regulated HMGB2 was discovered to be associated with human cervical cancer. These findings suggest that HMGB2 may be a potentially prognostic biomarker and a target for the therapy of cervical cancer.
Collapse
Affiliation(s)
- Xiao Han
- Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419, Fangxie Road, Huangpu District, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200011, China
| | - Siyi Zhong
- Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419, Fangxie Road, Huangpu District, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200011, China
| | - Pengnan Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200011, China.,Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Yanmei Liu
- Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419, Fangxie Road, Huangpu District, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200011, China
| | - Sangsang Shi
- Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419, Fangxie Road, Huangpu District, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200011, China
| | - Congquan Wu
- Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419, Fangxie Road, Huangpu District, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200011, China
| | - Shujun Gao
- Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, No. 419, Fangxie Road, Huangpu District, Shanghai, 200011, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
6
|
Zhang X, Dang Y, Liu R, Zhao S, Ma J, Qin Y. MicroRNA-127-5p impairs function of granulosa cells via HMGB2 gene in premature ovarian insufficiency. J Cell Physiol 2020; 235:8826-8838. [PMID: 32391592 DOI: 10.1002/jcp.29725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022]
Abstract
Distinct microRNA (miRNA) profiles have been reported in premature ovarian insufficiency (POI), but their functional relevance in POI is not yet clearly stated. In this study, aberrant expressions of miR-127-5p and high mobility group box 2 (HMGB2) were observed by microarrays in granulosa cells (GCs) from biochemical POI (bPOI) women and further confirmed by a quantitative reverse-transcription polymerase chain reaction. Immortalized human granulosa cell line and mouse primary ovarian GCs were used for functional validation. Orthotopic mouse model was established to examine the role of miR-127-5p in vivo. Finally, the expression of miR-127-5p was measured in the plasma of bPOI women. The receiver operating characteristic curve analysis was performed to determine the indicative role of miR-127-5p for ovarian reserve. Results showed the upregulation of miR-127-5p was identified in GCs from bPOI patients. It inhibited GCs proliferation and impaired DNA damage repair capacity through targeting HMGB2, which was significantly downregulated in GCs from the same cohort of cases. miR-127-5p was confirmed to attenuate DNA repair capability via HMGB2 in mouse ovary in vivo. Intriguingly, the upexpression of miR-127-5p was also detected in plasma of bPOI individuals, suggesting that miR-127-5p could be a promising indicator for bPOI. Taken together, our results discovered the deleterious effects of miR-127-5p on GCs function and its predictive value in POI process. The target gene HMGB2 could be considered as a new candidate for POI. This study highlights the importance of DNA repair capacity for ovarian function and sheds light on the epigenetic mechanism in the pathogenicity of POI.
Collapse
Affiliation(s)
- Xinyue Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Yujie Dang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Ran Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Santhiya P, Christian Bharathi A, Syed Ibrahim B. The pathogenicity, structural and functional exploration of human HMGB1 single nucleotide polymorphisms using in silico study. J Biomol Struct Dyn 2020; 38:4471-4482. [PMID: 31625460 DOI: 10.1080/07391102.2019.1682048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The human HMGB1 gene mutations have a major impact on several immune-related diseases and cancer. The detrimental effect of non-synonymous mutations of HMGB1 has not been investigated yet, hence the present study aims to examine single nucleotide polymorphisms and their implications on the structure-function of human HMGB1. The multifaceted HMGB1 protein acts as pleiotropic cytokine and regulates essential genes for coordinated cellular functions. The mutational effect on HMGB1 was analyzed by sequence-based homology methods, supervised learning methods, and structure-based methods. The study identified 58 non-synonymous mutations in human HMGB1, out of which only 2 mutations; R10T (rs61742222) and F103C (rs61733675) were classified as the SNPs with highest deleterious and disease-causing mutants. The effect of these mutations in structure of HMGB1 was scrutinized and the R10T mutant found to have a distinct structural behaviour in the B-box domain. In addition, R10T mutant predicted that it affects the MoRF function of HMGB1 and it could disrupt the DNA binding or/and protein partner interaction activity by HMGB1. F103C mutation takes place at the TLR binding and cytokine inducing region of HMGB1, hence it could affect the protein binding activity which involves in many cellular signaling. The study identified potent mutations R10T (a cancer-causing somatic mutation) and F103C (a novel mutation) and these mutations either directly or indirectly hinder DNA binding activity and TLR and cytokine binding of HMGB1. These findings will help in understanding the molecular basis of these promising mutations and functional role of human HMGB1 in cancer and immunological diseases.AbbreviationsAGERAdvanced glycosylation end product-specific receptorCXCLChemokine (C-X-C motif) liganddbSNPThe single nucleotide polymorphism databaseHMGB1High mobility group box 1LINCSLINear Constraint SolverMDSMolecular dynamics simulationMoRFMolecular recognition featuresNPTNumber of particle, Pressure and TemperatureNVTNumber of particle, Volume and TemperaturensSNPNon-synonymous SNPPBCPartial boundary conditionPCAPrincipal component analysisPMEPartial mesh EwaldRMSDRoot mean square deviationRMSFRoot mean square fluctuationSNPSingle nucleotide polymorphismSPCSingle-point chargeTLRToll-like receptorUTRUn-translated RegionCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- P Santhiya
- Centre for Bioinformatics, Pondicherry University, Pondicherry, India
| | | | - B Syed Ibrahim
- Centre for Bioinformatics, Pondicherry University, Pondicherry, India
| |
Collapse
|
8
|
MicroRNAs in Cardiac Hypertrophy. Int J Mol Sci 2019; 20:ijms20194714. [PMID: 31547607 PMCID: PMC6801828 DOI: 10.3390/ijms20194714] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022] Open
Abstract
Like other organs, the heart undergoes normal adaptive remodeling, such as cardiac hypertrophy, with age. This remodeling, however, is intensified under stress and pathological conditions. Cardiac remodeling could be beneficial for a short period of time, to maintain a normal cardiac output in times of need; however, chronic cardiac hypertrophy may lead to heart failure and death. MicroRNAs (miRNAs) are known to have a role in the regulation of cardiac hypertrophy. This paper reviews recent advances in the field of miRNAs and cardiac hypertrophy, highlighting the latest findings for targeted genes and involved signaling pathways. By targeting pro-hypertrophic genes and signaling pathways, some of these miRNAs alleviate cardiac hypertrophy, while others enhance it. Therefore, miRNAs represent very promising potential pharmacotherapeutic targets for the management and treatment of cardiac hypertrophy.
Collapse
|
9
|
Zhang P, Lu Y, Gao S. High-mobility group box 2 promoted proliferation of cervical cancer cells by activating AKT signaling pathway. J Cell Biochem 2019; 120:17345-17353. [PMID: 31209930 DOI: 10.1002/jcb.28998] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Cervical cancer is one of the leading killers for female worldwide. Nevertheless, the less knowledge of molecular mechanism for cervical cancer limited the improvement of treatment effects. High-mobility group box 2 (HMGB2) belongs to the HMGB family, which could play diverse roles in cell proliferation. This work mainly aimed to study the functions of HMGB2 on cervical cancer cells proliferation. HMGB2 was highly expressed in cervical cancer tissue. The results of real-time polymerase chain reaction and Western blot analysis showed that HMGB2 was expressed in all the five cervical cancer cells (HeLa, CaSki, SiHa, C-33A, and C4-1 cells). In addition, HMGB2 overexpression obviously improved cell viability and promoted cell cycle progression, which suggested that HMGB2 could promote proliferation of cervical cancer cells. Moreover, HMGB2 overexpression increased the level of p-AKT and reduced the levels of p21 and p27. However, HMGB2 downregulation had contrary influences on cell proliferation, cell cycle distribution and the levels of p-AKT, p21, and p27. Notably, LY294002, as an inhibitor of AKT signaling pathway, could significantly weaken the effects of HMGB2 overexpression, which indicated that HMGB2 might promote cell proliferation by activating AKT signaling pathway. Therefore, HMGB2 was hopeful to be a candidate as a new biomarker and therapy target for cervical cancer.
Collapse
Affiliation(s)
- Pengnan Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, People's Republic of China.,Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yuan Lu
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, People's Republic of China.,Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Shujun Gao
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, People's Republic of China.,Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
10
|
No association between HMGB1 polymorphisms and cancer risk: evidence from a meta-analysis. Biosci Rep 2018; 38:BSR20180658. [PMID: 30049847 PMCID: PMC6123066 DOI: 10.1042/bsr20180658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to determine whether High mobility group box 1 (HMGB1) polymorphism was associated with cancer susceptibility. PubMed, Embase, and ISI Web of Science were extensively searched without language restriction. Data were extracted using a standardized data collection sheet after two reviewers scanned studies independently. The association between HMGB1 polymorphism and cancer risks was indicated as odds ratio (OR) along with its related 95% confidence interval (95%CI). Meta-analysis was conducted via RevMan 5.3 software. A total of ten studies comprising 4530 cases and 5167 controls were included in our study. Meta-analysis revealed no statistical association between rs1045411, rs1360485, rs1412125, or rs2249825 polymorphisms in HMGB1 gene and risk of cancer, either did subgroup analysis of rs1045411 stratified by cancer types and ethnic groups. Our results revealed no statistical association between current four polymorphism loci and cancer risks, suggesting that the attempt of applying HMGB1 variants as a therapeutic target or a prognosis predictor might still require a second thought. However, HMGB1 is deemed to play pleiotropic roles in cancers, we strongly call for large-scale studies with high evidence level to uncover the exact relationship between HMGB1 gene variants and cancer progression.
Collapse
|
11
|
Shao S, Gao Y, Liu J, Tian M, Gou Q, Su X. Ferulic Acid Mitigates Radiation Injury in Human Umbilical Vein Endothelial Cells In Vitro via the Thrombomodulin Pathway. Radiat Res 2018; 190:298-308. [DOI: 10.1667/rr14696.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shuai Shao
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Yue Gao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jianxiang Liu
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Mei Tian
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Qiao Gou
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Xu Su
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| |
Collapse
|
12
|
Fu D, Li J, Wei J, Zhang Z, Luo Y, Tan H, Ren C. HMGB2 is associated with malignancy and regulates Warburg effect by targeting LDHB and FBP1 in breast cancer. Cell Commun Signal 2018; 16:8. [PMID: 29463261 PMCID: PMC5819211 DOI: 10.1186/s12964-018-0219-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background High-mobility group box 2 (HMGB2) is implicated in tumorigenesis in various cancers. However, the clinical significance of HMGB2 signaling in human breast cancer progression remains unknown. Methods We investigated HMGB2 expression in 185 cases of primary breast cancer and matched normal breast tissue specimens, and explored the underlying mechanisms of altered HMGB2 expression as well as the impact of this altered expression on breast cancer growth and on aerobic glycolysis using in vitro and animal models of breast cancer. Results HMGB2 was more highly expressed in tumor-cell nuclei of breast cancer cells than in the adjacent normal breast tissues (P < 0.05). Higher HMGB2 expression correlated with larger tumor size (P = 0.003) and advanced tumor stage (P = 0.033). A Cox proportional hazards model revealed that HMGB2 expression was an independent prognostic factor for breast cancer after radical resection (P < 0.05). Experimentally, knockdown of HMGB2 expression by stable transfected shRNA significantly decreased the growth and glycolysis of breast cancer cells both in vitro and in mouse models. Mechanically, promotion of breast cancer progression by HMGB2 directly and significantly correlated with activation of LDHB expression and inactivation of FBP1 expression. Conclusions These results disclose a novel role for HMGB2 in reprogramming the metabolic process in breast cancer cells by targeting LDHB and FBP1 and provide potential prognostic predictors for breast cancer patients.
Collapse
Affiliation(s)
- Deyuan Fu
- Department of Thyroid and Breast Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, China.
| | - Jing Li
- Departments of CyberKnife, Huashan Hospital, Fudan University, No.525,Hongfeng Road, Shanghai, 200032, China.,Departments of CyberKnife, Huashan Hospital, Fudan University, No.525,Hongfeng Road, Shanghai, 201206, China
| | - Jinli Wei
- Department of Thyroid and Breast Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, China
| | - Zhengquan Zhang
- Department of Thyroid and Breast Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, China
| | - Yulin Luo
- Department of Thyroid and Breast Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, China
| | - Haosheng Tan
- Department of Thyroid and Breast Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, China
| | - Chuanli Ren
- The Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, 225001, China
| |
Collapse
|
13
|
Rouhiainen A, Zhao X, Vanttola P, Qian K, Kulesskiy E, Kuja-Panula J, Gransalke K, Grönholm M, Unni E, Meistrich M, Tian L, Auvinen P, Rauvala H. HMGB4 is expressed by neuronal cells and affects the expression of genes involved in neural differentiation. Sci Rep 2016; 6:32960. [PMID: 27608812 PMCID: PMC5036535 DOI: 10.1038/srep32960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/18/2016] [Indexed: 12/21/2022] Open
Abstract
HMGB4 is a new member in the family of HMGB proteins that has been characterized in sperm cells, but little is known about its functions in somatic cells. Here we show that HMGB4 and the highly similar rat Transition Protein 4 (HMGB4L1) are expressed in neuronal cells. Both proteins had slow mobility in nucleus of living NIH-3T3 cells. They interacted with histones and their differential expression in transformed cells of the nervous system altered the post-translational modification statuses of histones in vitro. Overexpression of HMGB4 in HEK 293T cells made cells more susceptible to cell death induced by topoisomerase inhibitors in an oncology drug screening array and altered variant composition of histone H3. HMGB4 regulated over 800 genes in HEK 293T cells with a p-value ≤0.013 (n = 3) in a microarray analysis and displayed strongest association with adhesion and histone H2A –processes. In neuronal and transformed cells HMGB4 regulated the expression of an oligodendrocyte marker gene PPP1R14a and other neuronal differentiation marker genes. In conclusion, our data suggests that HMGB4 is a factor that regulates chromatin and expression of neuronal differentiation markers.
Collapse
Affiliation(s)
- Ari Rouhiainen
- Neuroscience center, University of Helsinki, Finland.,Department of Biosciences, University of Helsinki, Finland
| | - Xiang Zhao
- Neuroscience center, University of Helsinki, Finland.,Schools of Pharmacy and Medicine, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | | | - Kui Qian
- Institute of Biotechnology, University of Helsinki, Finland
| | - Evgeny Kulesskiy
- Neuroscience center, University of Helsinki, Finland.,Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Finland
| | | | | | | | - Emmanual Unni
- Department of Biochemistry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marvin Meistrich
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Tian
- Neuroscience center, University of Helsinki, Finland.,Psychiatry Research Center, Beijing Hui Long Guan Hospital, Peking University, Beijing, China
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Finland
| | | |
Collapse
|
14
|
High Mobility Group B Proteins, Their Partners, and Other Redox Sensors in Ovarian and Prostate Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5845061. [PMID: 26682011 PMCID: PMC4670870 DOI: 10.1155/2016/5845061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/27/2015] [Indexed: 01/02/2023]
Abstract
Cancer cells try to avoid the overproduction of reactive oxygen species by metabolic rearrangements. These cells also develop specific strategies to increase ROS resistance and to express the enzymatic activities necessary for ROS detoxification. Oxidative stress produces DNA damage and also induces responses, which could help the cell to restore the initial equilibrium. But if this is not possible, oxidative stress finally activates signals that will lead to cell death. High mobility group B (HMGB) proteins have been previously related to the onset and progressions of cancers of different origins. The protein HMGB1 behaves as a redox sensor and its structural changes, which are conditioned by the oxidative environment, are associated with different functions of the protein. This review describes recent advances in the role of human HMGB proteins and other proteins interacting with them, in cancerous processes related to oxidative stress, with special reference to ovarian and prostate cancer. Their participation in the molecular mechanisms of resistance to cisplatin, a drug commonly used in chemotherapy, is also revised.
Collapse
|
15
|
Martinotti S, Patrone M, Ranzato E. Emerging roles for HMGB1 protein in immunity, inflammation, and cancer. Immunotargets Ther 2015; 4:101-9. [PMID: 27471716 PMCID: PMC4918250 DOI: 10.2147/itt.s58064] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
High-mobility group box 1 (HMGB1) protein is a member of the highly conserved non-histone DNA binding protein family. First identified in 1973, as one of a group of chromatin-associated proteins with high acidic and basic amino acid content, it was so named for its characteristic rapid mobility in polyacrylamide gel electrophoresis. HMGB1 was later discovered to have another function. It is released from a variety of cells into the extracellular milieu to act on specific cell-surface receptors. In this latter role, HMGB1 is a proinflammatory cytokine that may contribute to many inflammatory diseases, including sepsis. Therefore, HMGB1 regulates intracellular cascades influencing immune cell functions, including chemotaxis and immune modulation. The bioactivity of the HMGB1 is determined by specific posttranslational modifications that regulate its role in inflammation and immunity. During tumor development, HMGB1 has been reported to play paradoxical roles in promoting both cell survival and death by regulating multiple signaling pathways. In this review, we focus on the role of HMGB1 in physiological and pathological responses, as well as the mechanisms by which it contributes to immunity, inflammation, and cancer progression.
Collapse
Affiliation(s)
- Simona Martinotti
- DiSIT - Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Alessandria, Italy
| | - Mauro Patrone
- DiSIT - Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Alessandria, Italy
| | - Elia Ranzato
- DiSIT - Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Alessandria, Italy
| |
Collapse
|
16
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 720] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
17
|
Xu X, Zhu H, Wang T, Sun Y, Ni P, Liu Y, Tian S, Amoah Barnie P, Shen H, Xu W, Xu H, Su Z. Exogenous High-Mobility Group Box 1 Inhibits Apoptosis and Promotes the Proliferation of Lewis Cells via RAGE/TLR4-Dependent Signal Pathways. Scand J Immunol 2014; 79:386-94. [PMID: 24673192 DOI: 10.1111/sji.12174] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 03/25/2014] [Indexed: 01/16/2023]
Affiliation(s)
- X. Xu
- The Central Laboratory; The Fourth Affiliated Hospital of Jiangsu University; Zhenjiang China
- Department of Immunology & Laboratory Immunology; Jiangsu University; Zhenjiang China
| | - H. Zhu
- Department of Laboratory Medicine; The Affiliated Hospital of Jiangsu University; Zhenjiang China
| | - T. Wang
- The Central Laboratory; The Fourth Affiliated Hospital of Jiangsu University; Zhenjiang China
- Department of Immunology & Laboratory Immunology; Jiangsu University; Zhenjiang China
| | - Y. Sun
- The Central Laboratory; The Fourth Affiliated Hospital of Jiangsu University; Zhenjiang China
- Department of Immunology & Laboratory Immunology; Jiangsu University; Zhenjiang China
| | - P. Ni
- The Central Laboratory; The Fourth Affiliated Hospital of Jiangsu University; Zhenjiang China
- Department of Immunology & Laboratory Immunology; Jiangsu University; Zhenjiang China
| | - Y. Liu
- The Central Laboratory; The Fourth Affiliated Hospital of Jiangsu University; Zhenjiang China
| | - S. Tian
- The Central Laboratory; The Fourth Affiliated Hospital of Jiangsu University; Zhenjiang China
- Department of Immunology & Laboratory Immunology; Jiangsu University; Zhenjiang China
| | - P. Amoah Barnie
- The Central Laboratory; The Fourth Affiliated Hospital of Jiangsu University; Zhenjiang China
- Department of Immunology & Laboratory Immunology; Jiangsu University; Zhenjiang China
| | - H. Shen
- Department of Laboratory Medicine; The Affiliated People's Hospital of Jiangsu University; Zhenjiang China
| | - W. Xu
- The Central Laboratory; The Fourth Affiliated Hospital of Jiangsu University; Zhenjiang China
| | - H. Xu
- The Central Laboratory; The Fourth Affiliated Hospital of Jiangsu University; Zhenjiang China
- Department of Immunology & Laboratory Immunology; Jiangsu University; Zhenjiang China
| | - Z. Su
- The Central Laboratory; The Fourth Affiliated Hospital of Jiangsu University; Zhenjiang China
- Department of Immunology & Laboratory Immunology; Jiangsu University; Zhenjiang China
| |
Collapse
|
18
|
Morchikh M, Naughtin M, Di Nunzio F, Xavier J, Charneau P, Jacob Y, Lavigne M. TOX4 and NOVA1 proteins are partners of the LEDGF PWWP domain and affect HIV-1 replication. PLoS One 2013; 8:e81217. [PMID: 24312278 PMCID: PMC3842248 DOI: 10.1371/journal.pone.0081217] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 10/10/2013] [Indexed: 12/31/2022] Open
Abstract
PWWP domains are involved in the chromatin attachment of several proteins. They bind to both DNA and proteins and their interaction with specific histone methylation marks define them as a new class of histone code readers. The lens epithelium derived growth factor (LEDGF/p75) contains an N-terminal PWWP domain necessary for its interaction with chromatin but also a C-terminal domain which interacts with several proteins, such as lentiviral integrases. These two domains confer a chromatin-tethering function to LEDGF/p75 and in the case of lentiviral integrases, this tethering participates in the efficiency and site selectivity of integration. Although proteins interacting with LEDGF/p75 C-terminal domain have been extensively studied, no data exist about partners of its PWWP domain regulating its interaction with chromatin. In this study, we report the identification by yeast-two-hybrid of thirteen potential partners of the LEDGF PWWP domain. Five of these interactions were confirmed in mammalian cells, using both a protein complementation assay and co-immunoprecipitation approaches. Three of these partners interact with full length LEDGF/p75, they are specific for PWWP domains of the HDGF family and they require PWWP amino acids essential for the interaction with chromatin. Among them, the transcription activator TOX4 and the splicing cofactor NOVA1 were selected for a more extensive study. These two proteins or their PWWP interacting regions (PIR) colocalize with LEDGF/p75 in Hela cells and interact in vitro in the presence of DNA. Finally, single round VSV-G pseudotyped HIV-1 but not MLV infection is inhibited in cells overexpressing these two PIRs. The observed inhibition of infection can be attributed to a defect in the integration step. Our data suggest that a regulation of LEDGF interaction with chromatin by cellular partners of its PWWP domain could be involved in several processes linked to LEDGF tethering properties, such as lentiviral integration, DNA repair or transcriptional regulation.
Collapse
Affiliation(s)
- Mehdi Morchikh
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
- Institut Pasteur, Unité de Virologie Structurale, Centre National de la Recherche Scientifique, Unité de recherche associée, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Monica Naughtin
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
| | - Francesca Di Nunzio
- Institut Pasteur, Unité de Virologie Moléculaire et Vaccinologie, Centre National de la Recherche Scientifique, Paris, France
| | - Johan Xavier
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
| | - Pierre Charneau
- Institut Pasteur, Unité de Virologie Moléculaire et Vaccinologie, Centre National de la Recherche Scientifique, Paris, France
| | - Yves Jacob
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Centre National de la Recherche Scientifique, Paris, France
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Marc Lavigne
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
- Institut Pasteur, Unité de Virologie Structurale, Centre National de la Recherche Scientifique, Unité de recherche associée, Paris, France
- * E-mail:
| |
Collapse
|
19
|
Wu ZB, Cai L, Lin SJ, Xiong ZK, Lu JL, Mao Y, Yao Y, Zhou LF. High-mobility group box 2 is associated with prognosis of glioblastoma by promoting cell viability, invasion, and chemotherapeutic resistance. Neuro Oncol 2013; 15:1264-75. [PMID: 23828241 DOI: 10.1093/neuonc/not078] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The expression profile of high-mobility group box 2 (HMGB2) in patients with glioblastoma multiforme (GBM) and its clinical signature with underlying mechanisms were not fully explored. METHODS HMGB2 protein levels were measured in 51 GBM patients by immunohistochemical studies. To clarify the precise role of HMGB2 on cell invasion and viability of 3 GBM cell lines, we did in vitro and in vivo analyses with lentivirus vectors and small interfering RNA. Transwell invasion assays and wound-healing assays were used to analyze the invasion of GBM cells. Expression of p53 and matrix metalloproteinase 2/tissue inhibitors of metalloproteinase 2 (MMP2/TIMP2) protein was analyzed by Western blot. RESULTS HMGB2 protein expression was significantly higher in GBM than in controlled brain tissues (P < .0001). HMGB2 overexpression was significantly correlated with shorter overall survival time, which was the only independent prognostic factor for overall survival in a multivariate analysis (P = .017). HMGB2 knockdown by small interfering RNA decreased cell viability and invasion in vitro and significantly decreased tumor volume in vivo, which might be involved in the change of p53 expression and the balance of MMP2/TIMP2. Moreover, silencing of HMGB2 could significantly increase the sensitivity of GBM cells to temozolomide chemotherapy. CONCLUSIONS Our present data suggest that HMGB2 expression is a significant prognostic factor and might play an important role in cell invasion and temozolomide-induced chemotherapeutic sensitivity of GBM. This study highlights the importance of HMGB2 as a novel prognostic marker and an attractive therapeutic target of GBM.
Collapse
Affiliation(s)
- Zhe Bao Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Shin YJ, Kim MS, Kim MS, Lee J, Kang M, Jeong JH. High-mobility group box 2 (HMGB2) modulates radioresponse and is downregulated by p53 in colorectal cancer cell. Cancer Biol Ther 2012; 14:213-21. [PMID: 23255232 DOI: 10.4161/cbt.23292] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Overexpression of high-mobility group box 2 (HMGB2) is recently reported in several malignant cancers and was correlated with poor response to preoperative chemoradiotherapy of colorectal cancer patients. To enhance the chemoradiotherapy efficacy, the biological function of HMGB2 was investigated with respect to radiation response. HMGB2 gene knockdown cells were constructed by infecting shRNA expressing lentivirus and clonogenic assay was performed to count the radiosensitivity. HMGB2 knockdown sensitized HCT-116 and HT-29 colorectal cancer cells to ionizing radiation. This could be due to an increased DNA damage and an inefficient DNA damage repair in HMGB2 knockdown cells. In addition, an exposure to radiation downregulated HMGB2 expression in colorectal cancer cells with an intact TP53 gene. HMGB2 gene expression of TP53-mutant cell was not affected by irradiation. p53-mediated downregulation of HMGB2 was confirmed by direct activation of p53 using Nutlin-3 or by inducing p53 expression using Tet-On system. Luciferase reporter assay showed that HMGB2 promoter activity was inversely correlated with the amount p53 cotransfected. Our study revealed that HMGB2 is necessary to protect colorectal cancer cells from DNA damage and efficient DNA repair and p53-mediated downregulation is a critical mechanism of modulating HMGB2 expression.
Collapse
Affiliation(s)
- Young-Joo Shin
- Department of Radiation Oncology, Sanggye Paik Hospital, Inje University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|