1
|
Cicone F, Sarnelli A, Guidi C, Belli ML, Ferrari ME, Wahl R, Cremonesi M, Paganelli G. Dosimetric Approaches for Radioimmunotherapy of Non-Hodgkin Lymphoma in Myeloablative Setting. Semin Nucl Med 2022; 52:191-214. [PMID: 34996594 DOI: 10.1053/j.semnuclmed.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Radioimmunotherapy (RIT) is a safe and active treatment available for non-Hodgkin lymphomas (NHLs). In particular, two monoclonal antibodies raised against CD20, that is Zevalin (90Y-ibritumomab-tiuxetan) and Bexxar (131I-tositumomab) received FDA approval for the treatment of relapsing/refractory indolent or transformed NHLs. RIT is likely the most effective and least toxic anticancer agent in NHLs. However, its use in the clinical setting is still debated and, in case of relapse after optimized rituximab-containing regimens, the efficacy of RIT at standard dosage is suboptimal. Thus, clinical trials were based on the hypothesis that the inclusion of RIT in myeloablative conditioning would allow to obtain improved efficacy and toxicity profiles when compared to myeloablative total-body irradiation and/or high-dose chemotherapy regimens. Standard-activity RIT has a safe toxicity profile, and the utility of pretherapeutic dosimetry in this setting can be disputed. In contrast, dose-escalation clinical protocols require the assessment of radiopharmaceutical biodistribution and dosimetry before the therapeutic injection, as dose constrains for critical organs may be exceeded when RIT is administered at high activities. The aim of the present study was to review and discuss the internal dosimetry protocols that were adopted for non-standard RIT administration in the myeloablative setting before hematopoietic stem cell transplantation in patients with NHLs.
Collapse
Affiliation(s)
- Francesco Cicone
- Department of Experimental and Clinical Medicine, and Neuroscience Research Centre, PET/RM Unit, "Magna Graecia" University of Catanzaro, Catanzaro, Italy; Nuclear Medicine Unit, University Hospital "Mater Domini", Catanzaro, Italy
| | - Anna Sarnelli
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Claretta Guidi
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Maria Luisa Belli
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | | - Richard Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Marta Cremonesi
- Radiation Research Unit, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giovanni Paganelli
- Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
2
|
Cicone F, Gnesin S, Cremonesi M. Dosimetry of nuclear medicine therapies: current controversies and impact on treatment optimization. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2021; 65:327-332. [PMID: 34881850 DOI: 10.23736/s1824-4785.21.03418-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nuclear medicine therapeutic procedures have considerably expanded over the last few years, and their number is expected to grow exponentially in the future. Internal dosimetry has significantly developed as well, but has not yet been uniformly accepted as a valuable tool for prediction of therapeutic efficacy and toxicity. In this paper, we briefly summarize some of the arguments about the implementation of internal dosimetry in clinical practice. In addition, we provide a few examples of radionuclide anticancer therapies for which internal dosimetry demonstrated a significant impact on treatment optimization and patient outcome.
Collapse
Affiliation(s)
- Francesco Cicone
- PET/RM Unit, Department of Experimental and Clinical Medicine, and Neuroscience Research Center, Magna Graecia University of Catanzaro, Catanzaro, Italy - .,Unit of Nuclear Medicine, Mater Domini University Hospital, Catanzaro, Italy - .,University of Lausanne, Lausanne, Switzerland -
| | - Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland
| | - Marta Cremonesi
- Unit of Radiation Research, Department of Medical Imaging and Radiation Sciences, IRCCS European Institute of Oncology, Milan, Italy
| |
Collapse
|
3
|
D'Arienzo M, Pimpinella M, De Coste V, Capogni M, Ferrari P, Mariotti F, Iaccarino G, Ungania S, Strigari L. Absorbed dose measurements from a 90Y radionuclide liquid solution using LiF:Mg,Cu,P thermoluminescent dosimeters. Phys Med 2020; 69:127-133. [PMID: 31901837 DOI: 10.1016/j.ejmp.2019.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022] Open
Abstract
In the last few years there has been an increasing interest in the measurement of the absorbed dose from radionuclides, with special attention devoted to molecular radiotherapy treatments. In particular, the determination of the absorbed dose from beta emitting radionuclides in liquid solution poses a number of issues when dose measurements are performed using thermoluminescent dosimeters (TLD). Finite volume effect, i.e. the exclusion of radioactivity from the volume occupied by the TLD is one of these. Furthermore, TLDs need to be encapsulated into some kind of waterproof envelope that unavoidably contributes to beta particle attenuation during the measurement. The purpose of this study is twofold: I) to measure the absorbed dose to water, Dw, using LiF:Mg,Cu,P chips inside a PMMA cylindrical phantom filled with a homogenous 90YCl3 aqueous solution II) to assess the uncertainty budget related to Dw measurements. To this purpose, six cylindrical PMMA phantoms were manufactured at ENEA. Each phantom can host a waterproof PMMA stick containing 3 TLD chips encapsulated by a polystyrene envelope. The cylindrical phantoms were manufactured so that the radioactive liquid environment surrounds the whole stick. Finally, Dw measurements were compared with Monte Carlo (MC) calculations. The measurement of absorbed dose to water from 90YCl3 radionuclide solution using LiF:Mg,Cu,P TLDs turned out to be a viable technique, provided that all necessary correction factors are applied. Using this method, a relative combined standard uncertainty in the range 3.1-3.7% was obtained on each Dw measurement. The major source of uncertainty was shown to be TLDs calibration, with associated uncertainties in the range 0.7-2.2%. Comparison of measured and MC-calculated absorbed dose per emitted beta particle provided good results, with the two quantities being in the ratio 1.08.
Collapse
Affiliation(s)
- Marco D'Arienzo
- ENEA, National Institute of Ionizing Radiation Metrology, Via Anguillarese 301, 00123 Rome, Italy.
| | - Maria Pimpinella
- ENEA, National Institute of Ionizing Radiation Metrology, Via Anguillarese 301, 00123 Rome, Italy
| | - Vanessa De Coste
- ENEA, National Institute of Ionizing Radiation Metrology, Via Anguillarese 301, 00123 Rome, Italy
| | - Marco Capogni
- ENEA, National Institute of Ionizing Radiation Metrology, Via Anguillarese 301, 00123 Rome, Italy
| | - Paolo Ferrari
- ENEA, Radiation Protection Institute, Bologna Via Martiri di Monte Sole 4, 40129 Bologna, Italy
| | - Francesca Mariotti
- ENEA, Radiation Protection Institute, Bologna Via Martiri di Monte Sole 4, 40129 Bologna, Italy
| | | | - Sara Ungania
- Istituto Regina Elena, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Lidia Strigari
- Istituto Regina Elena, Via Elio Chianesi 53, 00144 Rome, Italy
| |
Collapse
|
4
|
Roberson PL, Smith LB, Morgan MA, Schipper MJ, Wilderman SJ, Avram AM, Kaminski MS, Dewaraja YK. Beyond Dose: Using Pretherapy Biomarkers to Improve Dose Prediction of Outcomes for Radioimmunotherapy of Non-Hodgkin Lymphoma. Cancer Biother Radiopharm 2017; 32:309-319. [PMID: 29083933 DOI: 10.1089/cbr.2017.2182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Non-Hodgkin Lymphoma patients respond differently to therapy according to inherent biological variations. Pretherapy biomarkers may improve dose-response prediction. MATERIALS AND METHODS Hybrid single-photon emission computed tomography (SPECT)/computed tomography (CT) three-dimensional imaging at multiple time points plus follow-up positron emission tomography (PET)/CT or CT at 2 and 6 months post therapy were used to fit tumor response to combined biological effect and cell clearance models from which three biological effect response parameters (radiosensitivity, cold effect sensitivity, and proliferation potential) were determined per patient. A correlation of biological effect parameters and pretherapy biomarker data (ki67, p53, and phospho-histone H3) allowed a dose-based equivalent biological effect (EBE) to be calculated for each patient. RESULTS Significant correlations were found between biological effect parameters and pretherapy biomarkers. Optimum correlations were found by splitting the patient data according to p53 status. Response correlation of progression free survival (PFS) and EBE were significantly improved compared with PFS and absorbed dose alone. CONCLUSIONS It is possible and desirable to use pretherapy biomarkers to enhance the predictive potential of dose calculations for patient-specific treatment planning.
Collapse
Affiliation(s)
- Peter L Roberson
- 1 Department of Radiation Oncology, University of Michigan , Ann Arbor, Michigan
| | - Lauren B Smith
- 2 Department of Pathology, University of Michigan , Ann Arbor, Michigan
| | - Meredith A Morgan
- 1 Department of Radiation Oncology, University of Michigan , Ann Arbor, Michigan
| | - Matthew J Schipper
- 1 Department of Radiation Oncology, University of Michigan , Ann Arbor, Michigan
| | - Scott J Wilderman
- 3 Department of Radiology, University of Michigan , Ann Arbor, Michigan
| | - Anca M Avram
- 3 Department of Radiology, University of Michigan , Ann Arbor, Michigan
| | - Mark S Kaminski
- 4 Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan
| | - Yuni K Dewaraja
- 3 Department of Radiology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
5
|
Chun SY, Fessler JA, Dewaraja YK. Post-reconstruction non-local means filtering methods using CT side information for quantitative SPECT. Phys Med Biol 2014; 58:6225-40. [PMID: 23956327 DOI: 10.1088/0031-9155/58/17/6225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Quantitative SPECT techniques are important for many applications including internal emitter therapy dosimetry where accurate estimation of total target activity and activity distribution within targets are both potentially important for dose–response evaluations. We investigated non-local means (NLM) post-reconstruction filtering for accurate I-131 SPECT estimation of both total target activity and the 3D activity distribution. We first investigated activity estimation versus number of ordered-subsets expectation–maximization (OSEM) iterations. We performed simulations using the XCAT phantom with tumors containing a uniform and a non-uniform activity distribution, and measured the recovery coefficient (RC) and the root mean squared error (RMSE) to quantify total target activity and activity distribution, respectively. We observed that using more OSEM iterations is essential for accurate estimation of RC, but may or may not improve RMSE. We then investigated various post-reconstruction filtering methods to suppress noise at high iteration while preserving image details so that both RC and RMSE can be improved. Recently, NLM filtering methods have shown promising results for noise reduction. Moreover, NLM methods using high-quality side information can improve image quality further. We investigated several NLM methods with and without CT side information for I-131 SPECT imaging and compared them to conventional Gaussian filtering and to unfiltered methods. We studied four different ways of incorporating CT information in the NLM methods: two known (NLM CT-B and NLM CT-M) and two newly considered (NLM CT-S and NLM CT-H). We also evaluated the robustness of NLM filtering using CT information to erroneous CT. NLM CT-S and NLM CT-H yielded comparable RC values to unfiltered images while substantially reducing RMSE. NLM CT-S achieved −2.7 to 2.6% increase of RC compared to no filtering and NLM CT-H yielded up to 6% decrease in RC while other methods yielded lower RCs than them: Gaussian filtering (up to 11.8% decrease in RC), NLM method without CT (up to 9.5% decrease in RC), and NLM CT-M and NLM CT-B (up to 19.4% decrease in RC). NLM CT-S and NLM CT-H achieved 8.2 to 33.9% and −0.9 to 36% decreased RMSE on tumors compared to no filtering respectively while other methods yielded less reduced or increased RMSE: Gaussian filtering (up to 7.9% increase in RMSE), NLM method without CT (up to 18.3% increase in RMSE), and NLM CT-M and NLM CT-B (up to 31.5% increase in RMSE). NLM CT-S and NLM CT-H also yielded images with tumor shapes that better-matched the true shapes than other methods. All NLM methods using CT information were robust to small misregistration between SPECT and CT, but NLM CT-S and NLM CT-H were more sensitive than NLM CT-M and NLM CT-B to missing CT information.
Collapse
Affiliation(s)
- Se Young Chun
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|