1
|
Zhao Q, Wei T, Ma R, Fu Y, Yang R, Su Y, Yu Y, Li B, Li Y. Progress on immuno-microenvironment and immune-related therapies in patients with pseudomyxoma peritonei. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0109. [PMID: 39026438 PMCID: PMC11271218 DOI: 10.20892/j.issn.2095-3941.2024.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 07/20/2024] Open
Abstract
Pseudomyxoma peritonei (PMP) is an indolent malignant syndrome. The standard treatment for PMP is cytoreductive surgery combined with intraperitoneal hyperthermic chemotherapy (CRS + HIPEC). However, the high recurrence rate and latent clinical symptoms and signs are major obstacles to further improving clinical outcomes. Moreover, patients in advanced stages receive little benefit from CRS + HIPEC due to widespread intraperitoneal metastases. Another challenge in PMP treatment involves the progressive sclerosis of PMP cell-secreted mucus, which is often increased due to activating mutations in the gene coding for guanine nucleotide-binding protein alpha subunit (GNAS). Consequently, the development of other PMP therapies is urgently needed. Several immune-related therapies have shown promise, including the use of bacterium-derived non-specific immunogenic agents, radio-immunotherapeutic agents, and tumor cell-derived neoantigens, but a well-recognized immunotherapy has not been established. In this review the roles of GNAS mutations in the promotion of mucin secretion and disease development are discussed. In addition, the immunologic features of the PMP microenvironment and immune-associated treatments are discussed to summarize the current understanding of key features of the disease and to facilitate the development of immunotherapies.
Collapse
Affiliation(s)
- Qidi Zhao
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
- Department of Surgical Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Tian Wei
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
- Department of Surgical Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Ru Ma
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yubin Fu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Rui Yang
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yandong Su
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yang Yu
- Department of Surgical Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Bing Li
- Department of Surgical Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yan Li
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
- Department of Surgical Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
2
|
Oliveira MC, Correia JDG. Clinical application of radioiodinated antibodies: where are we? Clin Transl Imaging 2022. [DOI: 10.1007/s40336-021-00477-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Lin R, Ma B, Liu N, Zhang L, He T, Liu X, Chen T, Liu W, Liang Y, Wang T, Ni G, Liu X, Yang N, Zhang J, Yuan J. Targeted radioimmunotherapy with the iodine-131-labeled caerin 1.1 peptide for human anaplastic thyroid cancer in nude mice. Ann Nucl Med 2021; 35:811-822. [PMID: 33948902 PMCID: PMC8197720 DOI: 10.1007/s12149-021-01618-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The combination of two or more drugs with different mechanisms is a promising strategy for cancer treatment, and radioimmunotherapy (RIT) is a trending antitumor strategy. Radiotherapy (RT) can promote and activate antitumor immune effects, and immunotherapy can strengthen the effects of selective internal radiotherapy (SIRT); the RIT combination is synergistic and can overcome the adverse side effects of monotherapy. In this study, we developed a radioimmunoconjugate (RIC)-the iodine-131 (131I)-labeled caerin 1.1 peptide-to treat human anaplastic thyroid cancer (ATC). METHODS Antitumor activity of caerin 1.1 peptide was determined by MTT assay, plate colony formation and cell wound scratch assays, and the mechanism of the inhibition of carein 1.1 peptide on the growth of CAL-62 cells was identified by cell cycle and western blot. Then, we investigated the efficacy of the caerin 1.1 peptide as a single drug and the 131I-labeled caerin 1.1 peptide for ATC. H&E and TUNEL staining was performed to detect dead cells in the tumor tissue sections. RESULTS We found that caerin 1.1 arrested cells in the S phase to induce apoptosis and inhibited tumor growth to inhibit phosphorylation of Akt. In vivo, the iodine-131 (131I)-labeled caerin 1.1 peptide achieved better antitumor efficacy than radiotherapy alone and showed a good biosafety profile. CONCLUSIONS Our study demonstrates for the first time that the iodine-131 (131I)-labeled caerin 1.1 peptide can inhibit CAL-62 tumor growth and migration. The iodine-131 (131I)-labeled caerin 1.1 peptide, which represents a radioimmunotherapy strategy based on the combination of SIRT with a peptide-drug conjugate, could provide a treatment means for the radical cure of ATC.
Collapse
Affiliation(s)
- Ruoting Lin
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Bowei Ma
- Department of TCM Resident Training, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Na Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Lu Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Tiantian He
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Xiongying Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Tongsheng Chen
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Wenjuan Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Yongnan Liang
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Tianfang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
- Genecology Research Centre, University of Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Guoying Ni
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
- Genecology Research Centre, University of Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Xiaosong Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
- The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
- Genecology Research Centre, University of Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Ning Yang
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Jinhe Zhang
- Department of Nuclear Medicine, General Hospital of the Southern Theatre Command, People's Liberation Army of China, Guangzhou, 510010, Guangdong, China
| | - Jianwei Yuan
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
4
|
Aghevlian S, Cai Z, Lu Y, Hedley DW, Winnik MA, Reilly RM. Radioimmunotherapy of PANC-1 Human Pancreatic Cancer Xenografts in NRG Mice with Panitumumab Modified with Metal-Chelating Polymers Complexed to 177Lu. Mol Pharm 2019; 16:768-778. [PMID: 30589553 DOI: 10.1021/acs.molpharmaceut.8b01040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our aim was to evaluate the effectiveness and normal tissue toxicity of radioimmunotherapy (RIT) of s.c. PANC-1 human pancreatic cancer (PnCa) xenografts in NRG mice using anti-EGFR panitumumab linked to metal-chelating polymers (MCPs) that present 13 DOTA chelators to complex the β-emitter, 177Lu. The clonogenic survival (CS) of PANC-1 cells treated in vitro with panitumumab-MCP-177Lu (0.3-1.2 MBq) and DNA double-strand breaks (DSBs) in the nucleus of these cells were measured by confocal immunofluorescence microscopy for γ-H2AX. Subcellular distribution of radioactivity for panitumumab-MCP-177Lu was measured, and absorbed doses to the cell nucleus were calculated. Normal tissue toxicity was assessed in non tumor-bearing NRG mice by monitoring body weight, complete blood cell counts (CBC), serum alanine aminotransferase (ALT), and creatinine (Cr) after i.v. injection of 6 MBq (10 μg) of panitumumab-MCP-177Lu. RIT was performed in NRG mice with s.c. PANC-1 tumors injected i.v. with 6 MBq (10 μg) of panitumumab-MCP-177Lu. Control mice received nonspecific human IgG-MCP-177Lu (6 MBq; 10 μg), unlabeled panitumumab (10 μg), or normal saline. The tumor growth index (TGI) was compared. Tumor and normal organ doses were estimated based on biodistribution studies. Panitumumab-MCP-177Lu reduced the CS of PANC-1 cells in vitro by 7.7-fold at the highest amount tested (1.2 MBq). Unlabeled panitumumab had no effect on the CS of PANC-1 cells. γ-H2AX foci were increased by 3.8-fold by panitumumab-MCP-177Lu. Panitumumab-MCP-177Lu deposited 3.84 Gy in the nucleus of PANC-1 cells. Administration of panitumumab-MCP-177Lu (6 MBq; 10 μg) to NRG mice caused no change in body weight, CBC, or ALT and only a slight increase in Cr compared to NRG mice treated with normal saline. Panitumumab-MCP-177Lu strongly inhibited tumor growth in NRG mice (TGI = 2.3 ± 0.2) compared to normal saline-treated mice (TGI = 5.8 ± 0.5; P < 0.01). Unlabeled panitumumab had no effect on tumor growth (TGI = 6.0 ± 1.6; P > 0.05). The absorbed dose of PANC-1 tumors was 12.3 Gy. The highest normal organ doses were absorbed by the pancreas, liver, spleen, and kidneys. We conclude that EGFR-targeted RIT with panitumumab-MCP-177Lu was able to overcome resistance to panitumumab in KRAS mutant PANC-1 tumors in NRG mice and may be a promising approach to treatment of PnCa in humans.
Collapse
Affiliation(s)
- Sadaf Aghevlian
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| | - Yijie Lu
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - David W Hedley
- Department of Medical Oncology , Princess Margaret Cancer Centre , 610 University Avenue , Toronto , Ontario M5G 2M9 , Canada
| | - Mitchell A Winnik
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada.,Department of Medical Imaging , University of Toronto , 263 McCaul Street , Toronto , Ontario M5T 1W7 , Canada.,Toronto General Research Institute and Joint Department of Medical Imaging , University Health Network , 200 Elizabeth Street , Toronto , Ontario M5G 2C4 , Canada
| |
Collapse
|
5
|
Arezumand R, Alibakhshi A, Ranjbari J, Ramazani A, Muyldermans S. Nanobodies As Novel Agents for Targeting Angiogenesis in Solid Cancers. Front Immunol 2017; 8:1746. [PMID: 29276515 PMCID: PMC5727022 DOI: 10.3389/fimmu.2017.01746] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022] Open
Abstract
Solid cancers are dependent on angiogenesis for sustenance. The FDA approval of Bevacizumab in 2004 inspired many scientists to develop more inhibitors of angiogenesis. Although several monoclonal antibodies (mAbs) are being administered to successfully combat various pathologies, the complexity and large size of mAbs seem to narrow the therapeutic applications. To improve the performance of cancer therapeutics, including those blocking tumor angiogenesis, attractive strategies such as miniaturization of the antibodies have been introduced. Nanobodies (Nbs), small single-domain antigen-binding antibody fragments, are becoming promising therapeutic and diagnostic proteins in oncology due to their favorable unique structural and functional properties. This review focuses on the potential and state of the art of Nbs to inhibit the angiogenic process for therapy and the use of labeled Nbs for non-invasive in vivo imaging of the tumors.
Collapse
Affiliation(s)
- Roghaye Arezumand
- Department of Biotechnology and Molecular Science, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Abbas Alibakhshi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Ranjbari
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
Targeted therapy of osteosarcoma with radiolabeled monoclonal antibody to an insulin-like growth factor-2 receptor (IGF2R). Nucl Med Biol 2016; 43:812-817. [PMID: 27744117 DOI: 10.1016/j.nucmedbio.2016.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Osteosarcoma overall survival has plateaued around 70%, without meaningful improvements in over 30years. Outcomes for patients with overt metastatic disease at presentation or who relapse are dismal. In this study we investigated a novel osteosarcoma therapy utilizing radioimmunotherapy (RIT) targeted to IGF2R, which is widely expressed in OS. METHODS Binding efficiency of the Rhenium-188(188Re)-labeled IGF2R-specific monoclonal antibody (mAb) to IGF2R on OS17 OS cells was assessed with Scatchard plot analysis. Biodistribution studies were performed in heterotopic murine osteosarcoma xenografts. Tumor growth was compared over a 24-day period post-treatment between mice randomized to receive 188Re-labeled IGF2R-specific murine mAb MEM-238 (188Re-MEM-238) or one of three controls: 188Re-labeled isotype control mAb, unlabeled MEM-238, or no treatment. RESULTS Results demonstrate that the radioimmunoconjugate had a high binding constant to IGF2R. Both 188Re-MEM-238 and the isotype control had similar initial distribution in normal tissue. After 48h 188Re-MEM-238 exhibited a 1.8 fold selective uptake within tumor compared to the isotype control (p=0.057). Over 24days, the tumor growth ratio was suppressed in animals treated with RIT compared to unlabeled and untreated controls (p=0.005) as demonstrated by a 38% reduction of IGF2R expressing osteosarcoma cells in the RIT group (p=0.002). CONCLUSIONS In conclusion, given the lack of new effective therapies in osteosarcoma, additional investigation into this target is warranted. ADVANCES IN KNOWLEDGE High expression of IGF2R on osteosarcoma tumors, paired with the specificity and in vivo anti-cancer activity of 188Re-labeled IGF2R-specific mAb suggests that IGF2R may represent a novel therapeutic target in the treatment of osteosarcoma. IMPLICATIONS FOR PATIENT CARE This targeted approach offers the benefits of being independent of a specific pathway, a resistance mechanism, and/or an inherent biologic tumor trait and therefore is relevant to all OS tumors that express IGF2R.
Collapse
|
7
|
Vilhelmsson Timmermand O, Larsson E, Ulmert D, Tran TA, Strand S. Radioimmunotherapy of prostate cancer targeting human kallikrein-related peptidase 2. EJNMMI Res 2016; 6:27. [PMID: 26983637 PMCID: PMC4797400 DOI: 10.1186/s13550-016-0181-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/06/2016] [Indexed: 04/13/2023] Open
Abstract
Background Prostate cancer ranks as the second most lethal malignancy in the Western world. Previous targeting of prostate-specific antigen and human kallikrein-related peptidase 2, two related enzymes abundantly expressed in prostatic malignancies, with radioimmunoconjugates intended for diagnostic purposes, have proven successful in rodent prostate cancer (PCa) models. In this study, we investigated the uptake and therapeutic efficacy of 177Lu-m11B6, a human kallikrein-related peptidase 2 (hK2)-targeting radioimmunoconjugate in a pre-clinical setting. Methods The murine 11B6 antibody, m11B6, with high affinity for hK2, was labeled with 177Lu. Therapy planning was done from a biokinetic study in LNCaP xenografts, and therapeutic activities of 177Lu-m11B6 were administered to groups of mice. Body weight and general conditions of the mice were followed over a period of 120 days. Results The tumor uptake in LNCaP xenografts was 30 ± 8.2 % injected activity per gram 1 week post-injection. In vivo targeting was hK2-specific as verified by a 2.5-fold decrease in tumor uptake in pre-dosed xenografts or by a fourfold lower tumor accumulation in hK2-negative DU 145 xenografts. Therapy showed a dose-dependent efficacy in LNCaP xenografts treated with 177Lu-m11B6. No therapeutic effect was seen in the control groups. The median survival for the lowest given activity of 177Lu-m11B6 was 88 days compared to that of 38 days in mice given labeled non-specific IgG. For the higher administrated activities, total tumor regression was seen with minimal normal organ toxicity. Conclusions We have proven the possibility of radioimmunotherapy targeting hK2 in subcutaneous prostate cancer xenografts. 177Lu-m11B6 exhibited high therapeutic efficacy, with low observed toxicity. Additionally, an evaluation of the concept of pre-therapy planning using a dosimetry model was included in this radioimmunotherapy study.
Collapse
Affiliation(s)
- O Vilhelmsson Timmermand
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Barngatan 2:1, Lund, S-21185, Sweden.
| | - E Larsson
- Department of Clinical Sciences Lund, Medical Radiation Physics, Lund University, Barngatan 2:1, Lund, S-21185, Sweden
| | - D Ulmert
- Department of Surgery (Urology), Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - T A Tran
- Lund University Bioimaging Center, Lund University, Klinikgatan 32, BMC D11, Lund, S-22242, Sweden
| | - Se Strand
- Department of Clinical Sciences Lund, Medical Radiation Physics, Lund University, Barngatan 2:1, Lund, S-21185, Sweden
| |
Collapse
|
8
|
Aung W, Tsuji AB, Sudo H, Sugyo A, Furukawa T, Ukai Y, Kurosawa Y, Saga T. Immunotargeting of Integrin α6β4 for Single-Photon Emission Computed Tomography and Near-Infrared Fluorescence Imaging in a Pancreatic Cancer Model. Mol Imaging 2016; 15:15/0/1536012115624917. [PMID: 27030400 PMCID: PMC5469600 DOI: 10.1177/1536012115624917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/01/2015] [Indexed: 12/15/2022] Open
Abstract
To explore suitable imaging probes for early and specific detection of pancreatic cancer, we demonstrated that α6β4 integrin is a good target and employed single-photon emission computed tomography (SPECT) or near-infrared (NIR) imaging for immunotargeting. Expression levels of α6β4 were examined by Western blotting and flow cytometry in certain human pancreatic cancer cell lines. The human cell line BxPC-3 was used for α6β4-positive and a mouse cell line, A4, was used for negative counterpart. We labeled antibody against α6β4 with Indium-111 (111In) or indocyanine green (ICG). After injection of 111In-labeled probe to tumor-bearing mice, biodistribution, SPECT, autoradiography (ARG), and immunohistochemical (IHC) studies were conducted. After administration of ICG-labeled probe, in vivo and ex vivo NIR imaging and fluorescence microscopy of tumors were performed. BxPC-3 tumor showed a higher radioligand binding in SPECT and higher fluorescence intensity as well as a delay in the probe washout in NIR imaging when compared to A4 tumor. The biodistribution profile of 111In-labeled probe, ARG, and IHC confirmed the α6β4 specific binding of the probe. Here, we propose that α6β4 is a desirable target for the diagnosis of pancreatic cancer and that it could be detected by radionuclide imaging and NIR imaging using a radiolabeled or ICG-labeled α6β4 antibody.
Collapse
Affiliation(s)
- Winn Aung
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Atsushi B Tsuji
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Hitomi Sudo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Aya Sugyo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Takako Furukawa
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | | | - Yoshikazu Kurosawa
- Innovation Center for Advanced Medicine, Fujita Health University, Toyoake, Japan
| | - Tsuneo Saga
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
9
|
Li L, Zhang CL, Kang L, Wang RF, Yan P, Zhao Q, Yin L, Guo FQ. Enhanced EJ Cell Killing of (125)I Radiation by Combining with Cytosine Deaminase Gene Therapy Regulated by Synthetic Radio-Responsive Promoter. Cancer Biother Radiopharm 2015; 30:342-8. [PMID: 26382009 PMCID: PMC4601673 DOI: 10.1089/cbr.2015.1862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: To investigate the enhancing effect of radionuclide therapy by the therapeutic gene placed under the control of radio-responsive promoter. Methods: The recombinant lentivirus E8-codA-GFP, including a synthetic radiation-sensitive promoter E8, cytosine deaminase (CD) gene, and green fluorescent protein gene, was constructed. The gene expression activated by 125I radiation was assessed by observation of green fluorescence. The ability of converting 5-fluorocytosine (5-FC) to 5-fluorourial (5-FU) by CD enzyme was assessed by high-performance liquid chromatography. The viability of the infected cells exposed to 125I in the presence of 5-FC was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the infected cells exposed to 125I alone served as negative control and 5-FU as positive control. Results: The recombinant lentiviral vector was constructed successfully. On exposure of infected cells to 125I, green fluorescence can be observed and 5-FU can be detected. MTT assay showed that the survival rate for infected cells treated with 125I was lower compared with the 125I control group, but higher than the positive control group. Conclusion: The synthetic promoter E8 can induce the expression of downstream CD gene under 125I radiation, and the tumor killing effect of 125I can be enhanced by combining CD gene therapy with radiosensitive promoter.
Collapse
Affiliation(s)
- Ling Li
- 1 Department of Nuclear Medicine, Peking University First Hospital , Beijing, China
| | - Chun-li Zhang
- 1 Department of Nuclear Medicine, Peking University First Hospital , Beijing, China .,2 Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine , Wuxi, China
| | - Lei Kang
- 1 Department of Nuclear Medicine, Peking University First Hospital , Beijing, China
| | - Rong-Fu Wang
- 1 Department of Nuclear Medicine, Peking University First Hospital , Beijing, China
| | - Ping Yan
- 1 Department of Nuclear Medicine, Peking University First Hospital , Beijing, China
| | - Qian Zhao
- 1 Department of Nuclear Medicine, Peking University First Hospital , Beijing, China
| | - Lei Yin
- 1 Department of Nuclear Medicine, Peking University First Hospital , Beijing, China
| | - Feng-qin Guo
- 1 Department of Nuclear Medicine, Peking University First Hospital , Beijing, China
| |
Collapse
|
10
|
Lam RKK, Fung YK, Han W, Yu KN. Rescue effects: irradiated cells helped by unirradiated bystander cells. Int J Mol Sci 2015; 16:2591-609. [PMID: 25625514 PMCID: PMC4346853 DOI: 10.3390/ijms16022591] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/16/2014] [Accepted: 01/13/2015] [Indexed: 12/28/2022] Open
Abstract
The rescue effect describes the phenomenon where irradiated cells or organisms derive benefits from the feedback signals sent from the bystander unirradiated cells or organisms. An example of the benefit is the mitigation of radiation-induced DNA damages in the irradiated cells. The rescue effect can compromise the efficacy of radioimmunotherapy (RIT) (and actually all radiotherapy). In this paper, the discovery and subsequent confirmation studies on the rescue effect were reviewed. The mechanisms and the chemical messengers responsible for the rescue effect studied to date were summarized. The rescue effect between irradiated and bystander unirradiated zebrafish embryos in vivo sharing the same medium was also described. In the discussion section, the mechanism proposed for the rescue effect involving activation of the nuclear factor κB (NF-κB) pathway was scrutinized. This mechanism could explain the promotion of cellular survival and correct repair of DNA damage, dependence on cyclic adenosine monophosphate (cAMP) and modulation of intracellular reactive oxygen species (ROS) level in irradiated cells. Exploitation of the NF-κB pathway to improve the effectiveness of RIT was proposed. Finally, the possibility of using zebrafish embryos as the model to study the efficacy of RIT in treating solid tumors was also discussed.
Collapse
Affiliation(s)
- R K K Lam
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong.
| | - Y K Fung
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong.
| | - W Han
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - K N Yu
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
11
|
D'Huyvetter M, Vincke C, Xavier C, Aerts A, Impens N, Baatout S, De Raeve H, Muyldermans S, Caveliers V, Devoogdt N, Lahoutte T. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody. Am J Cancer Res 2014; 4:708-20. [PMID: 24883121 PMCID: PMC4038753 DOI: 10.7150/thno.8156] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/24/2014] [Indexed: 11/09/2022] Open
Abstract
RIT has become an attractive strategy in cancer treatment, but still faces important drawbacks due to poor tumor penetration and undesirable pharmacokinetics of the targeting vehicles. Smaller radiolabeled antibody fragments and peptides feature highly specific target accumulation, resulting in low accumulation in healthy tissue, except for the kidneys. Nanobodies are the smallest (MW < 15 kDa) functional antigen-binding fragments that are derived from heavy chain-only camelid antibodies. Here, we show that the extend of kidney retention of nanobodies is predominantly dictated by the number of polar residues in the C-terminal amino acid tag. Three nanobodies were produced with different C-terminal amino-acid tag sequences (Myc-His-tagged, His-tagged, and untagged). Dynamic planar imaging of Wistar rats with 111In-DTPA-nanobodies revealed that untagged nanobodies showed a 70 % drop in kidney accumulation compared to Myc-His-tagged nanobodies at 50 min p.i.. In addition, coinfusion of untagged nanobodies with the plasma expander Gelofusin led to a final reduction of 90 %. Similar findings were obtained with different 177Lu-DTPA-2Rs15d nanobody constructs in HER2pos tumor xenografted mice at 1 h p.i.. Kidney accumulation decreased 88 % when comparing Myc-His-tagged to untagged 2Rs15d nanobody, and 95 % with a coinfusion of Gelofusin, without affecting the tumor targeting capacity. Consequently, we identified a generic method to reduce kidney retention of radiolabeled nanobodies. Dosimetry calculations of Gelofusin-coinfused, untagged 177Lu-DTPA-2Rs15d revealed a dose of 0.90 Gy/MBq that was delivered to both tumor and kidneys and extremely low doses to healthy tissues. In a comparative study, 177Lu-DTPA-Trastuzumab supplied 6 times more radiation to the tumor than untagged 177Lu-DTPA-2Rs15d, but concomitantly also a 155, 34, 80, 26 and 4180 fold higher radioactivity burden to lung, liver, spleen, bone and blood. Most importantly, nanobody-based targeted radionuclide therapy in mice bearing small estiblashed HER2pos tumors led to an almost complete blockade of tumor growth and a significant difference in event-free survival between the treated and the control groups (P < 0.0001). Based on histology analyses, no evidence of renal inflammation, apoptosis or necrosis was obtained. In conclusion, these data highlight the importance of the amino acid composition of the nanobody's C-terminus, as it has a predominant effect on kidney retention. Moreover, we show successful nanobody-based targeted radionuclide therapy in a xenograft model and highlight the potential of radiolabeled nanobodies as a valuable adjuvant therapy candidate for treatment of minimal residual and metastatic disease.
Collapse
|