1
|
Exosome-Transmitted miR-506-3p Inhibits Colorectal Cancer Cell Malignancy via Regulating GSTP1. Appl Biochem Biotechnol 2023; 195:2015-2027. [PMID: 36401721 DOI: 10.1007/s12010-022-04268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/20/2022]
Abstract
Exosome-mediated microRNA transfer has been shown to regulate cancer progression. However, the involvement of exosomal-miR-506-3p in colorectal cancer (CRC) is unknown. The goal of the research was to study into the role of exosomal-miR-506-3p in CRC. Using a qRT-PCR experiment, it was observed that CRC tissues had lower levels of miR-506-3p than non-tumor tissues. It was observed that miR-506-3p inhibited the proliferation, regulates apoptosis, and cell cycle of HT29 and SW480 cells as compared to control groups. Dual luciferase reporter assay results showed that GSTP1 was the downstream target molecule of miR-506-3p, which was consistent with the database prediction. Furthermore, FHC cells transfected with miR-506-3p could transfer miR-506-3p to SW480 cells, limiting cell growth and inducing cell death. We discovered a unique regulatory mechanism in which exosome-mediated transfer of miR-506-3p reduces proliferation and induces apoptosis in CRC through negative regulation of GSTP1, implying that exosome-mediated delivery of miR-506-3p provides fresh insight into CRC diagnostics and treatment.
Collapse
|
2
|
Predictive and Prognostic Significance of mRNA Expression and DNA Copies Aberrations of ERCC1, RRM1, TOP1, TOP2A, TUBB3, TYMS, and GSTP1 Genes in Patients with Breast Cancer. Diagnostics (Basel) 2022; 12:diagnostics12020405. [PMID: 35204496 PMCID: PMC8871321 DOI: 10.3390/diagnostics12020405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 12/04/2022] Open
Abstract
Increasingly, many researchers are focusing on the sensitivity in breast tumors (BC) to certain chemotherapy drugs and have personalized their research based on the assessment of this sensitivity. One such personalized approach is to assess the chemotherapy’s gene expression, as well as aberrations in the number of DNA copies—deletions and amplifications with the ability to have a significant effect on the gene’s activity. Thus, the aim of this work was to study the predictive and prognostic significance of the expression and chromosomal aberrations of eight chemosensitivity genes in breast cancer patients. Material and methods. The study involved 97 patients with luminal B breast cancer IIB–IIIB stages. DNA and RNA were isolated from samples of tumor tissue before and after treatment. Microarray analysis was performed for all samples on high-density microarrays (DNA chips) of Affymetrix (USA) CytoScanTM HD Array and Clariom™ S Assay, human. Detection of expression level of seven chemosensitivity genes—RRM1, ERCC1, TOP1, TOP2a, TUBB3, TYMS, and GSTP1—was performed using PCR real-time (RT-qPCR). Results. The expression of the RRM1 (AC scheme), TOP2α, TYMS, and TUBB3 genes in patients with an objective response to treatment (complete and partial regression) is higher than in patients with stabilization and progression (p < 0.05). According to our results, the presence of a high level of GSTP1 in a tumor biopsy is associated with the low efficiency of the NAC CP scheme (p = 0.05). The presence of RRM1 deletion is associated with complete and partial regression, as for the TOP1 and TUBB3 genes (p < 0.05). Higher rates of metastatic survival are associated with a high level of expression and amplification of the GSTP1 gene (log-rank test p = 0.02 and p = 0.05). Conclusion. Thus, a complex assessment of the chemotherapy’s gene expression is important not only for understanding the heterogeneity and molecular biology of breast cancer but also to obtain a more accurate disease prognosis.
Collapse
|
3
|
Determination of Genetic and Epigenetic Modifications-Related Prognostic Biomarkers of Breast Cancer: Genome High-Throughput Data Analysis. JOURNAL OF ONCOLOGY 2021; 2021:2143362. [PMID: 34557230 PMCID: PMC8455195 DOI: 10.1155/2021/2143362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
The high heterogeneity of breast cancer (BRCA) makes it more challenging to interpret the genetic variation mechanisms involved in BRCA pathogenesis and prognosis. Areas with high DNA methylation (such as CpG islands) were accompanied by copy number variation (CNV), and these genomic variations affected the level of DNA methylation. In this study, we characterized intertumor heterogeneity and analyzed the effects of CNV on DNA methylation and gene expression. In addition, we performed a Genetic Set Enrichment Analysis (GSEA) to identify key pathways for changes between patients with low and high expression of genes. Our analysis found two key genes, namely, HPDL and SOX17. The protein expressed by HPDL is 4-hydroxyphenylpyruvate dioxygenase-like protein, which has dioxygenase activity. SOX17 is a transcription factor that can inhibit Wnt signaling, promote the degradation of activated CTNNB1, and participate in cell proliferation. Our analysis found that the CNV of HPDL and SOX17 is not only related to the patient's prognosis, but also related to gene methylation and expression levels affecting the patient's survival time. Among them, the high-methylation, low-expression HPDL and SOX17 showed poor prognosis. And the addition of two copies of SOX17 is associated with a lower survival rate, while a decrease in the copy number of HPDL also suggests a poor prognosis. This study provided an effective bioinformatics basis for further exploration of molecular mechanisms related to BRCA and assessment of patient prognosis, but the development of biomarkers for diagnosis and treatment still requires further clinical data validation.
Collapse
|
4
|
Zhao X, Yang X, Fu L, Yu K. Associations of Estrogen Receptor, Progesterone Receptor, Human Epidemic Growth Factor Receptor-2 and Ki-67 with Ultrasound Signs and Prognosis of Breast Cancer Patients. Cancer Manag Res 2021; 13:4579-4586. [PMID: 34135634 PMCID: PMC8200160 DOI: 10.2147/cmar.s276422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/10/2021] [Indexed: 01/05/2023] Open
Abstract
Objective The functions of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and Ki-67 in breast cancer have been explored. This study was carried out to explore ER, PR, HER-2 and Ki-67 expression levels in breast cancer patients and their relationship with ultrasound signs and prognosis. Patients and Methods A total of 274 female primary breast cancer patients received preoperative ultrasound examination. ER, PR, HER-2 and Ki-67 expression levels in breast cancer tissues were detected by immunohistochemical staining after surgery. The correlations of ER, PR, HER-2 and Ki-67 expression with ultrasound signs and prognosis of breast cancer patients were analyzed. Results The positive expression rate of ER, PR and HER-2 and Ki-67 high expression in 274 breast cancer patients was 73.36% (201/274), 59.85% (164/274), 24.09% (66/274) and 66.06% (181/274), respectively. ER-positive expression had association with lymph node metastasis (LNM) and blood flow grading; HER-2-positive expression was associated with LNM, while Ki-67-positive expression was related to the tumor diameter, LNM, and blood flow grading. LNM and Ki-67 high expression were risk factors for OS; PR-positive was a protective factor for OS; TNM stage, tumor diameter, LNM and Ki-67 high expression were risk factors for DFS in breast cancer patients. Conclusion ER, PR, HER-2 and Ki-67 in breast cancer are related to the ultrasound signs and prognosis of breast cancer patients. The joint detection of multiple indicators provides a reference for the individualized treatment of targeted drugs.
Collapse
Affiliation(s)
- Xingjuan Zhao
- Department of Mammary Gland, Shanxi People's Hospital, Taiyuan City, Shanxi Province, 030000, People's Republic of China
| | - Xuan Yang
- Department of Mammary Gland, Shanxi People's Hospital, Taiyuan City, Shanxi Province, 030000, People's Republic of China
| | - Lei Fu
- Department of Surgery, Shanxi Provincial General Team Hospital of the Chinese People's Armed Police Force, Taiyuan City, Shanxi Province, 030000, People's Republic of China
| | - Keda Yu
- Department of Mammary Gland, Fudan University Cancer Hospital, Taiyuan City, Shanxi Province, 030000, People's Republic of China
| |
Collapse
|
5
|
Qu YH, Long N, Ran C, Sun J. The correlation of 18F-FDG PET/CT metabolic parameters, clinicopathological factors, and prognosis in breast cancer. Clin Transl Oncol 2020; 23:620-627. [PMID: 32683540 DOI: 10.1007/s12094-020-02457-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE To study the imaging parameters of 18F-fluorodeoxy glucose (18F-FDG) in breast cancer on positron emission tomography/computed tomography (PET/CT)-the correlation of clinical pathological factors and prognosis among the maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) of lesions for patients. METHODS From January 2012 to December 2014, a total of 125 female patients were treated in our hospital for the first time and were diagnosed as breast cancer by histopathology. They were selected as the research subjects. All of them had complete 18F-FDG PET/CT examination data before surgery, the postoperative clinicopathological information, and follow-up data. They were divided into the event group (38 cases) and the event-free group (87 cases) according to whether local recurrence or distant metastasis occurred after the follow-up, with the follow-up time 4-60 months. The correlation on 18F-FDG PET/CT metabolic parameters of breast cancer with clinicopathological factors and prognosis was retrospectively evaluated. RESULTS The primary lesions of 125 cases with breast cancers all had higher 18F-FDG uptake, and the SUVmax, MTV, and TLG of the primary tumors in the event group were significantly higher than those in the event-free group (t = 2.645, 2.782, 15.263, p = 0.011, 0.008, 0.000), p < 0.05; SUVmax, MTV, and TLG of primary breast cancer have no correlation with age and tumor site of patient (p > 0.05); there were statistically significant differences in the SUVmax, MTV, and TLG of primary tumor in the comparison of different tumor size, T stage, N stage, and histological grades (p < 0.05); all of SUVmax, MTV, and TLG in the estrogen receptor (ER) and/or progesterone receptor (PR) positive groups were lower than those in the negative group, with statistically significant difference (p < 0.05); the SUVmax, MTV, and TLG of human epidermal growth factor receptor 2 (HER2) positive group, proliferating cell nuclear antigen (Ki-67) high expression group were higher than those in the negative group and low expression group, with statistically significant difference (p < 0.05). There were 38 recurrence and metastasis cases within 125 cases with breast cancer in 5 years after operation, with the total recurrence and metastasis rate as 30.40% (38/125). The event-free survival rate in the SUVmax ≥ 8.64 group was significantly lower than that in the SUVmax < 8.64 group (p < 0.01). CONCLUSIONS The metabolic parameters of 18F-FDG PET/CT in breast cancer can reflect the biological behavior of the tumor indirectly; therefore, it was studied on the related correlation to provide the guidance of clinical individualized comprehensive treatment and prognostic judgment.
Collapse
Affiliation(s)
- Y-H Qu
- Department of Medical Imaging, The Affiliated Yantai Yuhuangding Hospital of Qindao University, No. 20 Yuhuangding East Road, Zhifu District, Yantai, 264000, China
| | - N Long
- Department of Medical Imaging, The Affiliated Yantai Yuhuangding Hospital of Qindao University, No. 20 Yuhuangding East Road, Zhifu District, Yantai, 264000, China
| | - C Ran
- Department of Medical Imaging, The Affiliated Yantai Yuhuangding Hospital of Qindao University, No. 20 Yuhuangding East Road, Zhifu District, Yantai, 264000, China
| | - J Sun
- Department of Medical Imaging, The Affiliated Yantai Yuhuangding Hospital of Qindao University, No. 20 Yuhuangding East Road, Zhifu District, Yantai, 264000, China.
| |
Collapse
|
6
|
Hu Z, Liu H, Zhang X, Hong B, Wu Z, Li Q, Zhou C. Promoter hypermethylation of CD133/PROM1 is an independent poor prognosis factor for head and neck squamous cell carcinoma. Medicine (Baltimore) 2020; 99:e19491. [PMID: 32176088 PMCID: PMC7440166 DOI: 10.1097/md.0000000000019491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PROM1 has played a pivotal role in the identification and isolation of tumor stem cells. This study aimed to assess the association between PROM1 promoter methylation and head and neck squamous cell carcinoma (HNSCC), and its diagnostic and prognostic value.Bioinformatic analysis was performed using data from the Cancer Genome Atlas-HNSC and Gene Expression Omnibus datasets.The results showed that PROM1 promoter was hypermethylated in HNSCCs compared with normal head and neck tissues (P = 4.58E-37). The area under the receiver-operating characteristic curve based on methylated PROM1 data was 0.799. In addition, PROM1 hypermethylation independently predicted poor overall survival (hazard ratio [HR]: 1.459, 95% confidence interval [CI]: 1.071-1.987, P = .016) and recurrence-free survival (HR: 1.729, 95% CI: 1.088-2.749, P = .021) in HNSCC patients. Moreover, PROM1 methylation was weakly negatively correlated with its mRNA expression (Pearson r = -0.148, P < .001).In summary, our study reveals that methylated PROM1 might serve as a valuable diagnostic biomarker and predictor of poor survival for HNSCC patients. PROM1 hypermethylation might partially contribute to its downregulation in HNSCC.
Collapse
Affiliation(s)
- Zele Hu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Zhenhai Longsai Hospital
| | - Huigao Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Zhenhai Longsai Hospital
| | - Xinrong Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Zhenhai Longsai Hospital
| | - Bin Hong
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Zhenhai Longsai Hospital
| | - Zhenhua Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center, Lihuili Eastern Hospital
| | - Qun Li
- Department of Otorhinolaryngology Head and Neck Surgery
- Laboratory of Otorhinolaryngology Head and Neck Surgery
- Diagnosis and Treatment Center of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery
- Laboratory of Otorhinolaryngology Head and Neck Surgery
- Diagnosis and Treatment Center of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Cui J, Li G, Yin J, Li L, Tan Y, Wei H, Liu B, Deng L, Tang J, Chen Y, Yi L. GSTP1 and cancer: Expression, methylation, polymorphisms and signaling (Review). Int J Oncol 2020; 56:867-878. [PMID: 32319549 DOI: 10.3892/ijo.2020.4979] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/17/2020] [Indexed: 01/04/2023] Open
Abstract
Glutathione S‑transferase Pi (GSTP1) is an isozyme encoded by the GST pi gene that plays an important regulatory role in detoxification, anti‑oxidative damage, and the occurrence of various diseases. The aim of the present study was to review the association between the expression of GSTP1 and the development and treatment of various cancers, and discuss GSTP1 methylation in several malignant tumors, such as prostate, breast and lung cancer, as well as hepatocellular carcinoma; to review the association between polymorphism of the GSTP1 gene and various diseases; and to review the effects of GSTP1 on electrophilic oxidative stress, cell signal transduction, and the regulation of carcinogenic factors. Collectively, GSTP1 plays a major role in the development of various diseases.
Collapse
Affiliation(s)
- Jian Cui
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Guoqing Li
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jie Yin
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Linwei Li
- Department of Laboratory, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yue Tan
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Haoran Wei
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Bang Liu
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lihong Deng
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jialu Tang
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yonglin Chen
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lan Yi
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|