1
|
Zhang C, Zhao H, Yan Y, Li Y, Lei M, Liu Y, Yang L, Zhao H, Zhou S, Pan S, Liu Z, Guo J. LncRNA evf-2 Exacerbates Podocyte Injury in Diabetic Nephropathy by Inducing Cell Cycle Re-entry and Inflammation Through Distinct Mechanisms Triggered by hnRNPU. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406532. [PMID: 39470303 DOI: 10.1002/advs.202406532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Indexed: 10/30/2024]
Abstract
Albuminuria is a hallmark of diabetic nephropathy (DN). Podocyte injury significantly contributes to proteinuria in DN. Our study found that lncRNA EVF-2 is upregulated in podocytes of DN patients, correlating with cell cycle re-entry and inflammation. Specific knockout or knockdown of lncRNA evf-2 in diabetic mice or cultured podocytes alleviated podocyte injury associated with these processes. RNA sequencing of evf-2-overexpressing podocytes unveiled a predominant enrichment of upregulated mRNAs in cell cycle and inflammation pathways, with alternative splicing in cell cycle-related mRNAs Ccnb1 and Tacc3. Chromatin isolation by RNA purification-mass spectrometry (ChIRP-MS) analysis highlighted the involvement of ribonucleoprotein complex and mRNA processing-related proteins, with hnRNPU as the main binding partner of evf-2 in spliceosomes. Knockdown of hnRNPU partially restored the upregulation of mRNAs induced by evf-2 overexpression, altering splice variants of Ccnb1 and Tacc3. This study is the first to reveal the splice variants of cell cycle-related genes in DN and elucidate the interaction between lncRNA evf-2 and hnRNPU. This interaction culminates in the upregulation of cell cycle-related genes and inflammatory factors through diverse pathways, potentially involving transcriptional activation, RNA stability modulation, alternative splicing or translational regulation. This highlights potential novel pathways for DN treatment.
Collapse
Affiliation(s)
- Chaojie Zhang
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Hui Zhao
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Yufan Yan
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Yanfei Li
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Min Lei
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Yong Liu
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Longhua Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan, 450001, China
| | - Huijian Zhao
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan, 450001, China
| | - Sijie Zhou
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Shaokang Pan
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Zhangsuo Liu
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China China
| | - Jia Guo
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China China
| |
Collapse
|
2
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Abdullah ST, Taheri M, Samadian M. A review on the role of mir-16-5p in the carcinogenesis. Cancer Cell Int 2022; 22:342. [DOI: 10.1186/s12935-022-02754-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractmiR-16-5p is microRNA with important roles in the development of diverse malignancies including neuroblastoma, osteosarcoma, hepatocellular carcinoma, cervical cancer, breast cancer, brain tumors, gastrointestinal cancers, lung cancer and bladder cancer. This miRNA has 22 nucleotides. hsa-miR-16-5p is produced by MIR16-1 gene. First evidence for its participation in the carcinogenesis has been obtained by studies reporting deletion and/or down-regulation of these miRNAs in chronic lymphocytic leukemia. Subsequent studies have shown down-regulation of miR-16-5p in a variety of cancer cell lines and clinical samples. Besides, tumor suppressor role of miR-16-5p has been verified in animal models of different types of cancers. Studies in these models have shown that over-expression of this miRNA or modulation of expression of lncRNAs that sponge this miRNA can block carcinogenic processes. In the current review, we summarize function of miR-16-5p in the development and progression of different cancers.
Collapse
|
3
|
Parashar D, Singh A, Gupta S, Sharma A, Sharma MK, Roy KK, Chauhan SC, Kashyap VK. Emerging Roles and Potential Applications of Non-Coding RNAs in Cervical Cancer. Genes (Basel) 2022; 13:genes13071254. [PMID: 35886037 PMCID: PMC9317009 DOI: 10.3390/genes13071254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/06/2022] Open
Abstract
Cervical cancer (CC) is a preventable disease using proven interventions, specifically prophylactic vaccination, pervasive disease screening, and treatment, but it is still the most frequently diagnosed cancer in women worldwide. Patients with advanced or metastatic CC have a very dismal prognosis and current therapeutic options are very limited. Therefore, understanding the mechanism of metastasis and discovering new therapeutic targets are crucial. New sequencing tools have given a full visualization of the human transcriptome's composition. Non-coding RNAs (NcRNAs) perform various functions in transcriptional, translational, and post-translational processes through their interactions with proteins, RNA, and even DNA. It has been suggested that ncRNAs act as key regulators of a variety of biological processes, with their expression being tightly controlled under physiological settings. In recent years, and notably in the past decade, significant effort has been made to examine the role of ncRNAs in a variety of human diseases, including cancer. Therefore, shedding light on the functions of ncRNA will aid in our better understanding of CC. In this review, we summarize the emerging roles of ncRNAs in progression, metastasis, therapeutics, chemo-resistance, human papillomavirus (HPV) regulation, metabolic reprogramming, diagnosis, and as a prognostic biomarker of CC. We also discussed the role of ncRNA in the tumor microenvironment and tumor immunology, including cancer stem cells (CSCs) in CC. We also address contemporary technologies such as antisense oligonucleotides, CRISPR-Cas9, and exosomes, as well as their potential applications in targeting ncRNAs to manage CC.
Collapse
Affiliation(s)
- Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, MI 53226, USA
- Correspondence: (D.P.); (V.K.K.); Tel.: +1-414-439-8089 (D.P.); +1-956-296-1738 (V.K.K.)
| | - Anupam Singh
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India; (A.S.); (S.G.)
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India; (A.S.); (S.G.)
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur 572107, Karnataka, India;
| | - Manish K. Sharma
- Department of Biotechnology, IP College, Bulandshahr 203001, Uttar Pradesh, India;
| | - Kuldeep K. Roy
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India;
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Vivek K. Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (D.P.); (V.K.K.); Tel.: +1-414-439-8089 (D.P.); +1-956-296-1738 (V.K.K.)
| |
Collapse
|
4
|
Zhao Y, Li P. Strategies of LncRNA DLX6-AS1 on Study and Therapeutics. Front Genet 2022; 13:871988. [PMID: 35719380 PMCID: PMC9198352 DOI: 10.3389/fgene.2022.871988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence has revealed the vital regulatory roles of lncRNA DLX6-AS1 in various tumors at pre-transcriptional, transcriptional, and post-transcriptional levels, which makes it a potential prognosis factor and therapeutic target. In addition, the presence of lncRNA DLX6-AS1 in the exosomes of peripheral blood of patients with tumors may also contribute to it being a possible cancer-related biomarker. However, most literature studies are devoted to studying the effect of lncRNA DLX6-AS1 as a sponging molecule of miRNAs, the research of which is likely to get stuck into a dilemma. Literature studies published already have demonstrated an exciting cell malignant phenotype inhibition with the knockdown of lncRNA DLX6-AS1 in various tumor cell lines. With the comprehensive development of delivery systems, high-throughput sequencing, and aptamers, the problems of finding novel research methods and exploring the therapeutic options which are based on lncRNA DLX6-AS1 in vivo could come into a period to deal with. This review aims to summarize the research statuses of lncRNA DLX6-AS1, discuss other study methodologies and therapeutic strategies on it, which might be of help to the deep learning of lncRNA DLX6-AS1 and its application from basic to clinical research.
Collapse
Affiliation(s)
- Yanyan Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Ran Z, Wu S, Ma Z, Chen X, Liu J, Yang J. Advances in exosome biomarkers for cervical cancer. Cancer Med 2022; 11:4966-4978. [PMID: 35578572 PMCID: PMC9761094 DOI: 10.1002/cam4.4828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 02/03/2023] Open
Abstract
Cervical cancer (CC) ranks as the fourth most frequently diagnosed malignancy in females worldwide. Exosomes are a subclass of extracellular vesicles released by nearly all types of cells that act as cargo transport vehicles, carrying proteins, and genetic material (such as miRNAs, long noncoding RNAs, and mRNAs) derived from their parent cells may affect receiving cells and thus have emerged as key players in several biological processes, including inflammatory pathways. In this review, we concentrated on the findings of exosome investigations in CC, particularly their components. They direct the actions of CC cells by inducing surface molecules associated with various biological pathways. We summarized the current knowledge of exosomal RNAs and proteins from CC cells and discussed the feasibility of exosomes as potential biomarkers for CC. We suggest that cancer-derived exosomes promote metastasis in CC by supporting EMT, controlling the proliferation, invasion, or migration of cancer cells, as well as influencing immune escape and aiding angiogenesis. Overall, cancer-derived exosomes are critical in the progression of CC, and further studies are necessary to advance our understanding of the clinical value of exosomes in CC.
Collapse
Affiliation(s)
- Zihan Ran
- Department of ResearchShanghai University of Medicine & Health Sciences Affiliated Zhoupu HospitalShanghaiChina,Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Shaobo Wu
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Zijng Ma
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Xiuwen Chen
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Jing Liu
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina
| | - Jingcheng Yang
- The Genius Medicine Consortium (TGMC)ShanghaiChina,State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer CenterFudan UniversityShanghaiChina,Greater Bay Area Institute of Precision MedicineGuangzhouChina
| |
Collapse
|
6
|
Ghafouri-Fard S, Najafi S, Hussen BM, Ganjo AR, Taheri M, Samadian M. DLX6-AS1: A Long Non-coding RNA With Oncogenic Features. Front Cell Dev Biol 2022; 10:746443. [PMID: 35281110 PMCID: PMC8916230 DOI: 10.3389/fcell.2022.746443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a heterogeneous group of ncRNAs with characteristic size of more than 200 nucleotides. An increasing number of lncRNAs have been found to be dysregulated in many human diseases particularly cancer. However, their role in carcinogenesis is not precisely understood. DLX6-AS1 is an lncRNAs which has been unveiled to be up-regulated in various number of cancers. In different cell studies, DLX6-AS1 has shown oncogenic role via promoting oncogenic phenotype of cancer cell lines. Increase in tumor cell proliferation, migration, invasion, and EMT while suppressing apoptosis in cancer cells are the effects of DLX6-AS1 in development and progression of cancer. In the majority of cell experiment, mediator miRNAs have been identified which are sponged and negatively regulated by DLX6-AS1, and they in turn regulate expression of a number of transcription factors, eventually affecting signaling pathways involved in carcinogenesis. These pathways form axes through which DLX6-AS1 promotes carcinogenicity of cancer cells. Xenograft animal studies, also have confirmed enhancing effect of DLX6-AS1 on tumor growth and metastasis. Clinical evaluations in cancerous patients have also shown increased expression of DLX6-AS1 in tumor tissues compared to healthy tissues. High DLX6-AS1 expression has shown positive association with advanced clinicopathological features in cancerous patients. Survival analyses have demonstrated correlation between high DLX6-AS1 expression and shorter survival. In cox regression analysis, DLX6-AS1 has been found as an independent prognostic factor for patients with various types of cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Aryan R. Ganjo
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Mohammad Samadian,
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Mohammad Samadian,
| |
Collapse
|
7
|
Yang L, Yang S, Ren C, Liu S, Zhang X, Sui A. Deciphering the roles of miR-16-5p in Malignant Solid Tumorsmalignant solid tumors. Pharmacotherapy 2022; 148:112703. [PMID: 35149384 DOI: 10.1016/j.biopha.2022.112703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/02/2022]
Abstract
MiR-16-5p, a member of the miR-16 family, has been reported to be abnormal expression in tumor tissues and blood of tumor patients, and also downregulated in most cancer cell lines. Aberrant expression of miR-16-5p promotes tumor cell proliferation, invasion, metastasis, angiogenesis, and can also affect the treatment sensitivity, such as radiotherapy and chemotherapy. Generally, miR-16-5p plays an anti-tumor role and these diverse functions of miR-16-5p in tumors collectively indicate that miR-16-5p may become an attractive target for novel anticancer therapies and a powerful diagnostic and prognostic biomarker for early tumor detection and population risk screening. Herein we review the role and utilization of miR-16-5p in malignant tumor in detail.
Collapse
Affiliation(s)
- Liuyi Yang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of North China University of Science and Technology, Tangshan, Hebei, China
| | - Sen Yang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of North China University of Science and Technology, Tangshan, Hebei, China
| | - Congcong Ren
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Shihua Liu
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Xiaopei Zhang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Aixia Sui
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
8
|
Yang Z, Lu S, Wang Y, Tang H, Wang B, Sun X, Qu J, Rao B. A Novel Defined Necroptosis-Related miRNAs Signature for Predicting the Prognosis of Colon Cancer. Int J Gen Med 2022; 15:555-565. [PMID: 35046713 PMCID: PMC8763259 DOI: 10.2147/ijgm.s349624] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Objective This study aims at exploring the relationship between necroptosis-related miRNAs and colon cancer prognosis. Methods We downloaded the miRNA sequencing data from the TCGA, and eight differentially expressed necroptosis-related miRNAs were screened. Then, we used Cox regression analysis to establish a prediction model of necroptosis-related miRNA. Finally, the prognosis related miRNAs were used to predict the target genes, and functional analysis was used to explore the potential mechanism of these target genes. Results The miRNA-seq data of 444 COAD cases were downloaded from TCGA. We identified 8 differentially expressed miRNAs (has-miR-16-5p, has-miR-141-3p, has-miR-148a-3p, has-miR-425-5p, has-miR-7-5p, has-miR-223-3p, has-miR-200a-5p, and has-miR-500a-3p), then Cox analysis was performed for determining eight-miRNA signature prognostic biomarkers with obviously different OS. The area under the curve (AUC) of receiver operating characteristic (ROC) curve for predicting 1-, 3-, and 5-year survival were 0.663, 0.653 and 0.639, respectively. The multivariate analysis also implied that the risk score was an independent prognostic factor considering other confounding factors (HR = 1.847, 95% CI = 1.197–2.848, P = 0.006). According to the Kaplan–Meier analysis, the expression of hsa-miR-500a-3p (P = 0.003), hsa-miR-16-5p (P = 0.004) and hsa-miR-148a-3p (P = 0.035) significantly affected OS outcomes. We predicted the target genes of these three miRNAs and then screened 10 hub genes (CCND1, SMAD3, SMAD2, CDK1, TGFB2, CDC25A, CHEK1, VEGFA, CCNE1, WEE1). In addition, CHEK1 was associated with the survival prognosis. Conclusion Our study demonstrated that necroptosis is closely associated with colon cancer, and the model of eight necroptosis-related miRNAs are potentially useful prognostic biomarkers and therapeutic targets for colon cancer.
Collapse
Affiliation(s)
- Zhenpeng Yang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Beijing, People’s Republic of China
| | - Shuai Lu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Beijing, People’s Republic of China
| | - Yuying Wang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Beijing, People’s Republic of China
| | - Huazhen Tang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Beijing, People’s Republic of China
| | - Bing Wang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Beijing, People’s Republic of China
| | - Xibo Sun
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, People’s Republic of China
| | - Jinxiu Qu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Beijing, People’s Republic of China
| | - Benqiang Rao
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing Shijitan Hospital, Beijing, People’s Republic of China
- Correspondence: Benqiang Rao Tel +86 13521237767 Email
| |
Collapse
|
9
|
PP2A-B55: substrates and regulators in the control of cellular functions. Oncogene 2022; 41:1-14. [PMID: 34686773 DOI: 10.1038/s41388-021-02068-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022]
Abstract
PP2A is a major serine/threonine phosphatase class involved in the regulation of cell signaling through the removal of protein phosphorylation. This class of phosphatases is comprised of different heterotrimeric complexes displaying distinct substrate specificities. The present review will focus on one specific heterocomplex, the phosphatase PP2A-B55. Herein, we will report the direct substrates of this phosphatase identified to date, and its impact on different cell signaling cascades. We will additionally describe its negative regulation by its inhibitors Arpp19 and ENSA and their upstream kinase Greatwall. Finally, we will describe the essential molecular features defining PP2A-B55 substrate specificity that confer the correct temporal pattern of substrate dephosphorylation. The main objective of this review is to provide the reader with a unique source compiling all the knowledge of this particular holoenzyme that has evolved as a key enzyme for cell homeostasis and cancer development.
Collapse
|
10
|
Abstract
Long non-coding RNAs (lncRNAs) have important roles in regulating the expression of genes and act as biomarkers in the initial development of different cancers. Increasing research studies have verified that dysregulation of lncRNAs occurs in various pathological processes including tumorigenesis and cancer progression. Among the different lncRNAs, DLX6-AS1 has been reported to act as an oncogene in the development and prognoses of different cancers, by affecting many different signalling pathways. This review summarises and analyses the recent research studies describing the biological functions of DLX6-AS1, its overall effect on signalling pathways and the molecular mechanisms underlying its action on the expression of genes in multiple human cancers. Our critical analysis suggests that different signalling pathways associated to this lncRNA may be used as a biomarker for diagnosis, or targets of treatment in cancers.
Collapse
|
11
|
Luo Y, Ge P, Wang M, Chen H, Liu J, Wei T, Jiang Y, Qu J, Chen H. Research progress of DLX6-AS1 in human cancers. Hum Cell 2021; 34:1642-1652. [PMID: 34508305 DOI: 10.1007/s13577-021-00613-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a kind of translational-repressor RNAs composed of more than 200 nucleotides and formerly considered as "transcriptional noise". Recently studies have shown that lncRNAs could bind to multiple biomolecules such as DNA, transcription factors, RNA, chromatin complexes and proteins, and regulate target gene expression at multi-levels, thus playing an essential role in human tumors. DLX6-AS1, a recently discovered oncogenic lncRNA, is highly expressed in various human tumors, including lung cancer, liver cancer and pancreatic cancer. This paper mainly reviewed the regulatory mechanism of DLX6-AS1 as a competitive endogenous RNA (ceRNA) in tumor cell proliferation, cell apoptosis, angiogenesis, epithelial-mesenchymal transformation, chemotherapy resistance and metabolic changes. Furthermore, the translational value of DLX6-AS1 in cancer was also elucidated, which suggested its potential as a diagnostic or prognostic biomarker in cancer. In summary, this present article not only makes an in-depth analysis of the expression changes and carcinogenic mechanism of DLX6-AS1 in various human cancers, but also provides a new breakthrough for the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Mengfei Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Haiyang Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Jiayue Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Tianfu Wei
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Yuankuan Jiang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Jialin Qu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China. .,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China. .,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China. .,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.
| |
Collapse
|
12
|
Lamsisi M, Wakrim L, Bouziyane A, Benhessou M, Oudghiri M, Laraqui A, Elkarroumi M, Ennachit M, El Mzibri M, Ennaji MM. The Biological Significance of Long noncoding RNAs Dysregulation and their Mechanism of Regulating Signaling Pathways in Cervical Cancer. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:75-101. [PMID: 34703793 PMCID: PMC8496250 DOI: 10.22088/ijmcm.bums.10.2.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/01/2021] [Indexed: 12/19/2022]
Abstract
Despite the remarkable decrease in cervical cancer incidence due to the availability of the HPV vaccine and implementation of screening programs for early detection in developed countries, this cancer remains a major health problem globally, especially in developing countries where most of the cases and mortality occur. Therefore, more understanding of molecular mechanisms of cervical cancer development might lead to the discovery of more effective diagnosis and treatment options. Research on long noncoding RNAs (lncRNAs) demonstrates the important roles of these molecules in many physiological processes and diseases, especially cancer. In the present review, we discussed the significance of lncRNAs altered expression in cervical cancer, highlighting their roles in regulating highly conserved signaling pathways, such as mitogen-activated protein kinase (MAPK), Wnt/β-catenin, Notch, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathways and their association with the progression of cervical cancer in order to bring more insight and understanding of this disease and their potential implications in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Maryame Lamsisi
- Team of Virology, Oncology and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia, Hassan II University of Casablanca, Morocco.
| | - Lahcen Wakrim
- Laboratory of Virology, Pasteur Institute of Morocco. Casablanca, Morocco.
| | - Amal Bouziyane
- Team of Virology, Oncology and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia, Hassan II University of Casablanca, Morocco.
- University Mohammed VI of Health Science, Casablanca, Morocco.
| | - Mustapha Benhessou
- Team of Virology, Oncology and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia, Hassan II University of Casablanca, Morocco.
- School of Medicine and Pharmacy, University Hassan II of Casablanca, Morocco.
| | - Mounia Oudghiri
- Immunology and Biodiversity laboratory, Faculty of Sciences Ain chock, Hassan II University of Casablanca, Morocco.
| | - Abdelilah Laraqui
- Research and Biosafety Laboratory, Mohammed V Military Hospital, University Mohammed V of Rabat, Morocco.
| | - Mohamed Elkarroumi
- School of Medicine and Pharmacy, University Hassan II of Casablanca, Morocco.
| | - Mohammed Ennachit
- School of Medicine and Pharmacy, University Hassan II of Casablanca, Morocco.
| | | | - Moulay Mustapha Ennaji
- Corresponding author: Faculty of Science and Techniques Mohammedia, University Hassan II of Casablanca, Morocco. E-mail:
| |
Collapse
|
13
|
Liu XX, Bao QX, Li YM, Zhang YH. The promotion of cervical cancer progression by signal transducer and activator of transcription 1-induced up-regulation of lncRNA MEOX2-AS1 as a competing endogenous RNA through miR-143-3p/VDAC1 pathway. Bioengineered 2021; 12:3322-3335. [PMID: 34224325 PMCID: PMC8806930 DOI: 10.1080/21655979.2021.1947174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are the new regulators and biomarkers for various tumors. However, in cervical cancer (CC), the potential roles of lncRNAs are not well characterized. This research aimed at exploring the roles of MEOX2 antisense RNA 1(MEOX2-AS1) in CC progression and the underlying mechanisms. The examination of MEOX2-AS1 levels in CC specimens and cell lines was conducted by RT-PCR. Loss-of-function experiments were performed for the assays of proliferation, migration, and invasion of CC cells after various treatments. Animal experiments were applied for the determination of the effects of MEOX2-AS1 in vivo. Bioinformatics analysis, together with dual-luciferase reporter assays, was applied to demonstrate the possible relationships among MEOX2-AS1, miR-143-3p and VDAC1. In the paper, we reported that MEOX2-AS1 levels were distinctly upregulated in CC cells and tissues, and higher MEOX2-AS1 expressions indicated a poor clinical outcome. Besides, STAT1 could activate transcriptions of MEOX2-AS1 by binding directly to its promoter region. The silence of MEOX2-AS1 suppressed the metastatic and proliferative ability of CC cells, as revealed by functional assays. Mechanistically, MEOX2-AS1 sponged miR-143-3p to regulate VDAC1 expressions. Furthermore, miR-143-3p inhibitor reversed the anti-proliferation and anti-metastasis effect of MEOX2-AS1 knockdown. Overall, the data indicated that the MEOX2-AS1/miR-143-3p/VDAC1 pathway participated in CC progression, making it a novel therapeutic target for CC cures.
Collapse
Affiliation(s)
- Xiao-Xing Liu
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, Shandong, P.R. China
| | - Qi-Xiu Bao
- Department of Public Health, Dongying People's Hospital, Dongying, Shandong, P.R. China
| | - Yan-Mei Li
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, Shandong, P.R. China
| | - Yan-Hua Zhang
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, Shandong, P.R. China
| |
Collapse
|
14
|
Deng Y, Zhang L, Luo R. LINC01783 facilitates cell proliferation, migration and invasion in non-small cell lung cancer by targeting miR-432-5p to activate the notch pathway. Cancer Cell Int 2021; 21:234. [PMID: 33902591 PMCID: PMC8073972 DOI: 10.1186/s12935-021-01912-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is a common malignancy around the globe. Increasing long non-coding RNAs (lncRNAs) have been confirmed to be associated with the progression of cancers, including NSCLC. Long intergenic non-protein coding RNA 1783 (LINC01783) is a novel lncRNA and its regulatory function as competing endogenous RNA (ceRNA) has not been studied in NSCLC. Methods RT-qPCR measured the expression level of LINC01783 in NSCLC cells. CCK-8, EdU, transwell and wound healing assays were conducted to detect cell proliferation, migration and invasion in NSCLC. The relationship between miR-432-5p and LINC01783 along with delta like 1 (DLL-1) was illustrated by RNA pull down, RIP and luciferase reporter assays. Results LINC01783 was found remarkably increased in NSCLC cell lines, and down-regulation of LINC01783 suppressed cell proliferation, migration and invasion. Then, we discovered Notch pathway was related to the progression of NSCLC, and DLL-1 expression was reduced by LINC01783 knockdown. Furthermore, DLL-1 overexpression could counteract the suppressive effects of LINC01783 down-regulation on the growth of NSCLC cells. MiR-432-5p was observed to be the mutual miRNA that could bind with both LINC01783 and DLL-1. Overexpression of miR-432-5p inhibited DLL-1 expression. In the rescue assays, miR-432-5p depletion offset the impacts of LINC01783 knockdown, and then DLL-1 silence recovered the influence of miR-432-5p down-regulation on NSCLC cell growth. Conclusion LINC01783 aggravates NSCLC cell growth by regulating Notch pathway and sponging miR-432-5p, being a potential target in the treatment for NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01912-0.
Collapse
Affiliation(s)
- Yanchao Deng
- Department of Thoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China.
| | - Liwei Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Ruiying Luo
- General Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
| |
Collapse
|
15
|
Zhang J, Jiang P, Wang S, Cheng W, Fu S. LncRNA LIPE-AS1 Predicts Poor Survival of Cervical Cancer and Promotes Its Proliferation and Migration via Modulating miR-195-5p/MAPK Pathway. Front Oncol 2021; 11:639980. [PMID: 33898314 PMCID: PMC8062982 DOI: 10.3389/fonc.2021.639980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
Aims: A growing number of studies have unveiled that long non-coding RNA (lncRNA) is conductive to cervical cancer (CC) development. However, the effect of LIPE-AS1 is remained to be studied in CC. Main Methods: Reverse transcription-polymerase chain reaction (RT-PCR) was employed to measure LIPE-AS1 expression in CC tissues and the adjacent normal tissues. Additionally, we conducted gain- and loss-of functional experiments of LIPE-AS1 and adopted CCK8 assay, BrdU assay, and in vivo tumor formation experiment to test the proliferation of CC cells (HCC94 and HeLa). Besides, the apoptosis, invasion, and epithelial-mesenchymal transformation (EMT) of CC cells were estimated using flow cytometry, transwell assay, and western blot, respectively. Further, LIPE-AS1 downstream targets were analyzed through bioinformatics, and the binding relationships between LIPE-AS1 and miR-195-5p were verified via dual-luciferase activity experiment and RNA Protein Immunoprecipitation (RIP) assay. Moreover, rescue experiments were conducted to confirm the effects of LIPE-AS1 and miR-195-5p in regulating CC development and the expressions of MAPK signaling pathway related proteins were detected by RT-PCR, western blot, and immunofluorescence. Key Findings: LIPE-AS1 was over-expressed in CC tissues (compared to normal adjacent tissues) and was notably related to tumor volume, distant metastasis. Overexpressing LIPE-AS1 accelerated CC cell proliferation, migration and EMT, inhibited apoptosis; while LIPE-AS1 knockdown had the opposite effects. The mechanism studies confirmed that LIPE-AS1 sponges miR-195-5p as a competitive endogenous RNA (ceRNA), which targets the 3'-untranslated region (3'-UTR) of MAP3K8. LIPE-AS1 promoted the expression of MAP3K8 and enhanced ERK1/2 phosphorylation, which were reversed by miR-195-5p. Significance: LIPE-AS1 regulates CC progression through the miR-195-5p/MAPK signaling pathway, providing new hope for CC diagnosis and treatment.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pinping Jiang
- Department of Gynecology, Nanjing Medical University, Nanjing, China
| | - Shoyu Wang
- Department of Molecular and Cellular Oncology, Nanjing University Medical School, Nanjing, China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shilong Fu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Zheng Q, Gu X, Yang Q, Chu Q, Dai Y, Chen Z. DLX6-AS1 is a potential biomarker and therapeutic target in cancer initiation and progression. Clin Chim Acta 2021; 517:1-8. [PMID: 33607068 DOI: 10.1016/j.cca.2021.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022]
Abstract
Long noncoding RNAs (lncRNAs) are involved in multiple functions such as the regulation of cellular homeostasis. They play prominent roles in the pathogenesis of human cancer, and contribute to every hallmark of cancer. The novel cancer-related lncRNA DLX6 antisense RNA 1 (DLX6-AS1) plays an essential regulatory role in enhancing and initiating carcinogenesis and tumor progression. This progression is due to the aberrant regulation of downstream factors in vitro as well as in vivo. DLX6-AS1 is significantly dysregulated in various cancers. DLX6-AS1 functions in tumor initiation and progression are regulated at the epigenetic, transcription, and posttranscriptional regulation levels. DLX6-AS1 functions as an oncogene, binding to miRNA targeting sites competing endogenous RNAs and causing the upregulation of downstream tumor-related genes and carcinogenesis. The regulation and detailed molecular mechanisms of DLX6-AS1 and its potential role in malignancies are comprehensively described in this paper. DLX6-AS1 has the potential to become a novel biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qin Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yiyang Dai
- Department of Gastroenterology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
17
|
S S, Shukla V, Khan GN, Eswaran S, Adiga D, Kabekkodu SP. Integrated bioinformatic analysis of miR-15a/16-1 cluster network in cervical cancer. Reprod Biol 2021; 21:100482. [PMID: 33548740 DOI: 10.1016/j.repbio.2021.100482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/28/2020] [Accepted: 01/18/2021] [Indexed: 01/14/2023]
Abstract
The miR-15a/16-1 cluster is abnormally expressed in cervical cancer (CC) tissues and plays a vital role in cervical carcinogenesis. We aimed to evaluate the miR-15a/16-1 expression in healthy and cancerous cervical tissues, identify the associated networks, and to test its prognostic significance. miR-15a/16-1-MC expressions were analyzed in TCGA-CESC datasets by UALCAN, GEPIA2, and Datasetviewer. miR-15a/16-1 validated targets were extracted from mirTarBase and in silico functional analysis of the target genes were performed using WebGestalt. The interaction networks were constructed by the miRNet, STRING, and NetworkAnalyst tools. The prognostic significance and metastatic potential of the target genes were predicted using UALCAN and HCMDB. The FDA approved drugs to target miR-15a/16-1 and target gene network in CC were performed using DGIdb, STITCH and PanDrugs. TCGA-CESC and GEO data analysis suggested significant overexpression of miR-15a/16-1 in CC samples. The Kaplan-Meier survival analysis showed that miR-15a and its four target genes (BCL2, CCNE1, NUP50, and RBPJ) influence the overall survival of CC patients. Among the 66 differentially expressed target genes, 12 of them are linked to head, neck, or lung metastasis. Functional enrichment analysis predicted the association of this cluster with p53 signaling, human papillomavirus infection, PI3-AKT signaling pathway, and pathways in cancer. Drug-gene interaction analysis showed 52 potential FDA approved drugs to interact with the miR-15a/16-1 target genes. Nine of the 52 drugs are currently used as a chemotherapeutic agent for the treatment of CC patients. The present study shows that miR-15a/16-1 expression can be used as a clinical marker and target for therapy in CC.
Collapse
Affiliation(s)
- Sriharikrishnaa S
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - G Nadeem Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
18
|
Ding XZ, Zhang SQ, Deng XL, Qiang JH. Serum Exosomal lncRNA DLX6-AS1 Is a Promising Biomarker for Prognosis Prediction of Cervical Cancer. Technol Cancer Res Treat 2021; 20:1533033821990060. [PMID: 33550924 PMCID: PMC7876577 DOI: 10.1177/1533033821990060] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/19/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Deregulation of long noncoding RNAs (lncRNAs) is involved in the initiation and progression of cancer. LncRNA DLX6-AS1 is regarded as an oncogene in many cancer types. However, the clinical role of serum exosomal lncRNA DLX6-AS1 in cervical cancer (CC) is poorly known. This study aimed to analyze the diagnostic and prognostic value of serum exosomal lncRNA DLX6-AS1 in CC. METHODS A total of 114 patients with CC, 60 patients with CIN (cervical intraepithelial neoplasia), and 110 healthy women were enrolled in this study. Real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to measure the serum exosomal lncRNA DLX6-AS1 levels in all participants. RESULTS Serum exosomal lncRNA DLX6-AS1 level was significantly elevated in CC patients compared with CIN patients and normal controls. In addition, high serum exosomal lncRNA DLX6-AS1 expression was positively associated with lymph node metastasis, differentiation, FIGO stage, and shortened survival. Patients with high serum exosomal lncRNA DLX6-AS1 expression were more prone to have a relapse. Furthermore, univariate and multivariate analyses suggested that serum exosomal lncRNA DLX6-AS1 was a potential prognostic indicator for overall survival of CC patients. CONCLUSIONS These findings demonstrated that serum lncRNA DLX6-AS1 might serve as a promising marker for the diagnosis and prognosis prediction of CC.
Collapse
Affiliation(s)
- Xian-zhen Ding
- Department of Gynaecology and Obstetrics, Wuxi Xishan Hospital, Wuxi, Jiangsu, China
| | - Shi-qiang Zhang
- Department of Oncology, Wuxi Xishan Hospital, Wuxi, Jiangsu, China
| | - Xiao-lan Deng
- Department of Oncology, Wuxi Xishan Hospital, Wuxi, Jiangsu, China
| | - Jin-hu Qiang
- Department of Oncology, Wuxi Xishan Hospital, Wuxi, Jiangsu, China
| |
Collapse
|
19
|
Cáceres-Durán MÁ, Ribeiro-dos-Santos Â, Vidal AF. Roles and Mechanisms of the Long Noncoding RNAs in Cervical Cancer. Int J Mol Sci 2020; 21:ijms21249742. [PMID: 33371204 PMCID: PMC7766288 DOI: 10.3390/ijms21249742] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer (CC) continues to be one of the leading causes of death for women across the world. Although it has been determined that papillomavirus infection is one of the main causes of the etiology of the disease, genetic and epigenetic factors are also required for its progression. Among the epigenetic factors are included the long noncoding RNAs (lncRNAs), transcripts of more than 200 nucleotides (nt) that generally do not code for proteins and have been associated with diverse functions such as the regulation of transcription, translation, RNA metabolism, as well as stem cell maintenance and differentiation, cell autophagy and apoptosis. Recently, studies have begun to characterize the aberrant regulation of lncRNAs in CC cells and tissues, including Homeobox transcript antisense RNA (HOTAIR), H19, Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), Cervical Carcinoma High-Expressed 1 (CCHE1), Antisense noncoding RNA in the inhibitors of cyclin-dependent kinase 4 (ANRIL), Growth arrest special 5 (GAS5) and Plasmacytoma variant translocation 1 (PVT1). They have been associated with several disease-related processes such as cell growth, cell proliferation, cell survival, metastasis and invasion as well as therapeutic resistance, and are novel potential biomarkers for diagnosis and prognosis in CC. In this review, we summarize the current literature regarding the knowledge we have about the roles and mechanisms of the lncRNAs in cervical neoplasia.
Collapse
Affiliation(s)
- Miguel Ángel Cáceres-Durán
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (M.Á.C.-D.); (Â.R.-d.-S.)
| | - Ândrea Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (M.Á.C.-D.); (Â.R.-d.-S.)
- Graduate Program in Oncology and Medical Sciences, Center of Oncology Researches, Federal University of Pará, Belém 66073-005, Brazil
| | - Amanda Ferreira Vidal
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (M.Á.C.-D.); (Â.R.-d.-S.)
- Correspondence: ; Tel.: +55-91-3201-7843
| |
Collapse
|
20
|
Razavi ZS, Tajiknia V, Majidi S, Ghandali M, Mirzaei HR, Rahimian N, Hamblin MR, Mirzaei H. Gynecologic cancers and non-coding RNAs: Epigenetic regulators with emerging roles. Crit Rev Oncol Hematol 2020; 157:103192. [PMID: 33290823 DOI: 10.1016/j.critrevonc.2020.103192] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
Gynecologic cancers involve the female genital organs, such as the vulva, vagina, cervix, endometrium, ovaries, and fallopian tubes. The occurrence and frequency of gynecologic cancer depends on personal lifestyle, history of exposure to viruses or carcinogens, genetics, body shape, and geographical habitat. For a long time, research into the molecular biology of cancer was broadly restricted to protein-coding genes. Recently it has been realized that non-coding RNAs (ncRNA), including long noncoding RNAs (LncRNAs), microRNAs, circular RNAs and piRNAs (PIWI-interacting RNAs), can all play a role in the regulation of cellular function within gynecological cancer. It is now known that ncRNAs are able to play dual roles, i.e. can exert both oncogenic or tumor suppressive functions in gynecological cancer. Moreover, several clinical trials are underway looking at the biomarker and therapeutic roles of ncRNAs. These efforts may provide a new horizon for the diagnosis and treatment of gynecological cancer. Herein, we summarize some of the ncRNAs that have been shown to be important in gynecological cancers.
Collapse
Affiliation(s)
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahab Majidi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
21
|
Goguet-Rubio P, Amin P, Awal S, Vigneron S, Charrasse S, Mechali F, Labbé JC, Lorca T, Castro A. PP2A-B55 Holoenzyme Regulation and Cancer. Biomolecules 2020; 10:biom10111586. [PMID: 33266510 PMCID: PMC7700614 DOI: 10.3390/biom10111586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023] Open
Abstract
Protein phosphorylation is a post-translational modification essential for the control of the activity of most enzymes in the cell. This protein modification results from a fine-tuned balance between kinases and phosphatases. PP2A is one of the major serine/threonine phosphatases that is involved in the control of a myriad of different signaling cascades. This enzyme, often misregulated in cancer, is considered a tumor suppressor. In this review, we will focus on PP2A-B55, a particular holoenzyme of the family of the PP2A phosphatases whose specific role in cancer development and progression has only recently been highlighted. The discovery of the Greatwall (Gwl)/Arpp19-ENSA cascade, a new pathway specifically controlling PP2A-B55 activity, has been shown to be frequently altered in cancer. Herein, we will review the current knowledge about the mechanisms controlling the formation and the regulation of the activity of this phosphatase and its misregulation in cancer.
Collapse
|
22
|
He Q, Meng J, Liu S, Zeng Q, Zhu Q, Wei Z, Shao Y. Long non-coding RNA UCA1 upregulates KIF20A expression to promote cell proliferation and invasion via sponging miR-204 in cervical cancer. Cell Cycle 2020; 19:2486-2495. [PMID: 32835591 DOI: 10.1080/15384101.2020.1807666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer is a female cancer with the second highest motility over the world. It is urgent to find new therapeutic methods based on long-coding RNAs and microRNAs. UCA1 was proved to be related with many human cancer types, but limited researches have been performed for the inner associations between UCA1 and cervical cancer. Eighty females who were undergoing surgeries were recruited for study in our research. We took the cervical cancer tissues and cells from them. Massive experiments and analysis were conducted to investigate the gene expressions and protein expressions about UCA1, KIF20A, and miR-204 in normal cells and cancer cells. The techniques contain real-time PCR, migration/invasion assay, western blot, in vivo experiments, and so on.We found that UCA1 expression was greatly up-regulated in cervical cancer tissues and cell lines. Our in vitro assays revealed that the suppressing of UCA1 could reduce cervical cancer cells proliferation, migration, and invasion. In addition, we found that lncRNA UCA1 could sponge miR-204 and promote the proliferation and invasion of cervical cancer cells via the up-regulating of KIF20A expression. As a result, the inhibiting of UCA1 could lower cervical cancer (CC) cells growth rate in vivo.Our results identified that UCA1 could serve as an oncogene in cervical cancer cell progression through the modulating of miR-204/KIF20A axis. It gives novel insights to the searching of novel therapeutic methods for cervical cancer.
Collapse
Affiliation(s)
- Qing He
- Shandong Key Laboratory in University of Functional Bioresource Utilization, College of Life Science, Dezhou University , Dezhou City, Shandong Province, PR. China
| | - Jianzhou Meng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing City, PR. China
| | - Shuai Liu
- Shandong Key Laboratory in University of Functional Bioresource Utilization, College of Life Science, Dezhou University , Dezhou City, Shandong Province, PR. China
| | - Qiangcheng Zeng
- Shandong Key Laboratory in University of Functional Bioresource Utilization, College of Life Science, Dezhou University , Dezhou City, Shandong Province, PR. China
| | - Qinghua Zhu
- Shandong Key Laboratory in University of Functional Bioresource Utilization, College of Life Science, Dezhou University , Dezhou City, Shandong Province, PR. China
| | - Zhenlin Wei
- Shandong Key Laboratory in University of Functional Bioresource Utilization, College of Life Science, Dezhou University , Dezhou City, Shandong Province, PR. China
| | - Yibo Shao
- Shandong Key Laboratory in University of Functional Bioresource Utilization, College of Life Science, Dezhou University , Dezhou City, Shandong Province, PR. China
| |
Collapse
|
23
|
Qi H, Lu L, Wang L. Long Noncoding RNA ST7-AS1 Upregulates TRPM7 Expression by Sponging microRNA-543 to Promote Cervical Cancer Progression. Onco Targets Ther 2020; 13:7257-7269. [PMID: 32801754 PMCID: PMC7394585 DOI: 10.2147/ott.s253868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/21/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose ST7 antisense RNA 1 (ST7-AS1) is a long noncoding RNA that affects the progression of gastric cancer and laryngeal squamous cell carcinoma. Herein, ST7-AS1 expression was detected in cervical cancer tissues and cell lines. In addition, its biological roles in inducing the aggressive phenotype of cervical cancer and its associated mechanisms of action were illustrated. Patients and Methods ST7-AS1 expression in cervical cancer tissues and cell lines was detected using quantitative real-time polymerase chain reaction (qRT-PCR). Malignancy was determined using Cell Counting Kit-8 assay, flow cytometry, transwell migration and invasion assays, and xenograft experiments. Bioinformatics analysis was performed to predict the interaction between ST7-AS1 and microRNA-543 (miR-543). Luciferase reporter assay, RNA immunoprecipitation assay, Western blotting, qRT-PCR, and rescue experiments were performed to further identify the interactions among ST7-AS1, miR-543, and transient receptor potential melastatin 7 (TRPM7). Results ST7-AS1 was upregulated in cervical cancer tissues and cell lines. ST7-AS1 overexpression was correlated with a high International Federation of Gynecology and Obstetrics stage, frequent lymph node metastasis, deep cervical invasion, and short overall survival in patients with cervical cancer. ST7-AS1 inhibition hindered cervical cancer cell proliferation, migration, and invasion; ST7-AS1 downregulation resulted in marked cell apoptosis. Additionally, ST7-AS1 deficiency restricted cervical tumor growth in vivo. Mechanistically, ST7-AS1 functioned as competing endogenous RNA to increase TRPM7 expression by sponging miR-543. Intriguingly, rescue experiments revealed that miR-543 downregulation or TRPM7 overexpression abrogated the inhibitory actions of ST7-AS1 knockdown in the aggressive phenotype of cervical cancer cells. Conclusion The newly identified ST7-AS1/miR-543/TRPM7 axis promoted the oncogenicity of cervical cancer cells both in vitro and in vivo. Our study highlighted the importance of this novel axis in cervical cancer progression, suggesting that this pathway can serve as a promising therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Hongguo Qi
- Department of Gynaecology and Obstetrics, The Second Children & Women's Healthcare of Jinan City, Jinan, Shandong 250022, People's Republic of China
| | - Lianwei Lu
- Department of Radiology, Weifang Binhai Economic and Technological Development Zone People's Hospital, Weifang, Shandong 261108, People's Republic of China
| | - Lili Wang
- Department of Gynaecology and Obstetrics, The 5th People's Hospital of Jinan, Jinan, Shandong 250022, People's Republic of China
| |
Collapse
|