1
|
Agbakwuru D, Wetzel SA. The Biological Significance of Trogocytosis. Results Probl Cell Differ 2024; 73:87-129. [PMID: 39242376 DOI: 10.1007/978-3-031-62036-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Trogocytosis is the intercellular transfer of membrane and membrane-associated proteins between cells. Trogocytosis is an underappreciated phenomenon that has historically routinely been dismissed as an artefact. With a greater understanding of the process and the implications it has on biological systems, trogocytosis has the potential to become a paradigm changer. The presence on a cell of molecules they don't endogenously express can alter the biological activity of the cell and could also lead to the acquisition of new functions. To better appreciate this phenomenon, it is important to understand how these intercellular membrane exchanges influence the function and activity of the donor and the recipient cells. In this chapter, we will examine how the molecules acquired by trogocytosis influence the biology of a variety of systems including mammalian fertilization, treatment of hemolytic disease of the newborn, viral and parasitic infections, cancer immunotherapy, and immune modulation.
Collapse
Affiliation(s)
- Deborah Agbakwuru
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Scott A Wetzel
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA.
- Division of Biological Sciences, University of Montana, Missoula, MT, USA.
| |
Collapse
|
2
|
Fantini M, Tsang KY, Arlen PM. Generation of the therapeutic monoclonal antibody NEO-201, derived from a cancer vaccine, which targets human malignancies and immune suppressor cells. Expert Rev Vaccines 2024; 23:812-829. [PMID: 39186325 DOI: 10.1080/14760584.2024.2397011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Cancer vaccines stimulate the activation of specific humoral and cellular adaptive responses against cancer cells.Antibodies generated post vaccination can be isolated and further selected to develop highly specific and potent monoclonal antibodies (mAbs) against tumor-associated antigens. AREAS COVERED This review describes different types of cancer vaccines, the process of the generation of the mAb NEO-201 from the Hollinshead cancer vaccine platform, the characterization of the antigen recognized by NEO-201, the ability of NEO-201 to bind and mediate the killing of cancer cells and immunosuppressive cells (gMDSCs and Tregs) through ADCC and CDC, NEO-201 preclinical and clinical toxicity and efficacy. EXPERT OPINION To overcome the problem of poor clinical efficacy of cancer vaccines, due to the activity of immunosuppressive cells, cancer vaccines could be combined with other immunotherapeutics able to deplete immunosuppressive cells. Results from clinical trials, employing NEO-201 alone or in combination with pembrolizumab, showed that durable stabilization of disease after treatment was due to the ability of NEO-201 to target and reduce the percentage of circulating Tregs and gMDSCs.These findings provide compelling support to combine NEO-201 with cancer vaccines to reintegrate their ability to elicit a robust and durable immune adaptive response against cancer.
Collapse
|
3
|
Cardenas KCA, Enos CW, Spear MR, Austin DE, Almofeez R, Kortchak S, Pincus L, Guo HB, Dolezal S, Pierce JM, Furth E, Gineste C, Kwon Y, Gelber C. CT109-SN-38, a Novel Antibody-drug Conjugate with Dual Specificity for CEACAM5 and 6, Elicits Potent Killing of Pancreatic Cancer Cells. Curr Cancer Drug Targets 2024; 24:720-732. [PMID: 38178674 DOI: 10.2174/0115680096260614231115192343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND CEACAM5 and CEACAM6 are glycosylphosphatidylinositol (GPI)- linked members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family, which are frequently upregulated in epithelial cancers where they contribute to invasion, metastasis, immune evasion, and resistance to anoikis. CT109 is a novel antibody with dual specificity to both CEACAM5 and 6. OBJECTIVES In this study, we aimed to perform the preclinical characterization of CT109 and antibody- drug conjugate (ADCs) derivatives of CT109, focusing on CT109-SN-38. METHODS CT109's cognate epitope was characterized by scanning mutagenesis. CT109 specificity and internalization kinetics were assessed by immunoblot and flow cytometry, respectively. Cognate antigen expression prevalence in colorectal cancer and normal tissue arrays was determined by immunohistochemistry. CT109 conjugations were generated by the reaction of reduced CT109 cysteines with maleimide-functionalized payload linkers. In vitro cytotoxic activity of CT109 ADCs was characterized on antigen-positive and negative pancreatic ductal adenocarcinoma cell (PDAC) lines using a luminometric viability assay. In vivo efficacy of CT109-SN-38 was assessed on a PDAC tumor xenograft model at 10 and 25 mg/kg concentrations. RESULTS CT109 was shown to bind a glycoepitope centered on N309. CT109 is internalized in the CEACAM5+/CEACAM6+ double-positive PDAC line, BxPC-3, with a t1/2 of 2.3 hours. CT109 ADCs elicit a dose and antigen-dependent cytotoxic effect, with CT109-SN-38 exhibiting an IC50 value of 21 nM in BxPC-3 cells. In a BxPC-3 tumor xenograft model, CT109-SN-38 reduced tumor growth and induced regression in 3/10 mice at a concentration 25 mg/kg. CONCLUSION These data suggest that further preclinical and clinical development of CT109-SN-38 is warranted.
Collapse
Affiliation(s)
| | | | - Mark R Spear
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| | - Dana E Austin
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| | - Raghad Almofeez
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| | | | - Lauren Pincus
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| | - Hua-Bei Guo
- University of Georgia Cancer Center, Department of Biochemistry and Molecular Biology and the Complex Carbohydrate Research Center (CCRC), USA
| | - Samuel Dolezal
- University of Georgia Cancer Center, Department of Biochemistry and Molecular Biology and the Complex Carbohydrate Research Center (CCRC), USA
| | - J Michael Pierce
- University of Georgia Cancer Center, Department of Biochemistry and Molecular Biology and the Complex Carbohydrate Research Center (CCRC), USA
| | - Emma Furth
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | | | - Yongjun Kwon
- Institute: Food and Drug Administration, CDER, MD, USA
| | - Cohava Gelber
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| |
Collapse
|
4
|
Götz L, Rueckschloss U, Balk G, Pfeiffer V, Ergün S, Kleefeldt F. The role of carcinoembryonic antigen-related cell adhesion molecule 1 in cancer. Front Immunol 2023; 14:1295232. [PMID: 38077351 PMCID: PMC10704240 DOI: 10.3389/fimmu.2023.1295232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), also known as CD66a, is a member of the immunoglobulin superfamily. CEACAM1 was shown to be a prognostic marker in patients suffering from cancer. In this review, we summarize pre-clinical and clinical evidence linking CEACAM1 to tumorigenicity and cancer progression. Furthermore, we discuss potential CEACAM1-based mechanisms that may affect cancer biology.
Collapse
Affiliation(s)
- Lisa Götz
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Gözde Balk
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Verena Pfeiffer
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
5
|
Cole CB, Morelli MP, Fantini M, Miettinen M, Fetsch P, Peer C, Figg WD, Yin T, Houston N, McCoy A, Lipkowitz S, Zimmer A, Lee JM, Pavelova M, Villanueva EN, Trewhitt K, Solarz BB, Fergusson M, Mavroukakis SA, Zaki A, Tsang KY, Arlen PM, Annunziata CM. First-in-human phase 1 clinical trial of anti-core 1 O-glycans targeting monoclonal antibody NEO-201 in treatment-refractory solid tumors. J Exp Clin Cancer Res 2023; 42:76. [PMID: 36991390 PMCID: PMC10053355 DOI: 10.1186/s13046-023-02649-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND NEO201 is a humanized IgG1 monoclonal antibody (mAb) generated against tumor-associated antigens from patients with colorectal cancer. NEO-201 binds to core 1 or extended core 1 O-glycans expressed by its target cells. Here, we present outcomes from a phase I trial of NEO-201 in patients with advanced solid tumors that have not responded to standard treatments. METHODS This was a single site, open label 3 + 3 dose escalation clinical trial. NEO-201 was administered intravenously every two weeks in a 28-day cycle at dose level (DL) 1 (1 mg/kg), DL 1.5 (1.5 mg/kg) and DL 2 (2 mg/kg) until dose limiting toxicity (DLT), disease progression, or patient withdrawal. Disease evaluations were conducted after every 2 cycles. The primary objective was to assess the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of NEO-201. The secondary objective was to assess the antitumor activity by RECIST v1.1. The exploratory objectives assessed pharmacokinetics and the effect of NEO-201 administration on immunologic parameters and their impact on clinical response. RESULTS Seventeen patients (11 colorectal, 4 pancreatic and 2 breast cancers) were enrolled; 2 patients withdrew after the first dose and were not evaluable for DLT. Twelve of the 15 patients evaluable for safety discontinued due to disease progression and 3 patients discontinued due to DLT (grade 4 febrile neutropenia [1 patient] and prolonged neutropenia [1 patient] at DL 2, and grade 3 prolonged (> 72 h) febrile neutropenia [1 patient] at DL 1.5). A total of 69 doses of NEO-201 were administered (range 1-15, median 4). Common (> 10%) grade 3/4 toxicities occurred as follows: neutropenia (26/69 doses, 17/17 patients), white blood cell decrease (16/69 doses, 12/17 patients), lymphocyte decrease (8/69 doses, 6/17 patients). Thirteen patients were evaluable for disease response; the best response was stable disease (SD) in 4 patients with colorectal cancer. Analysis of soluble factors in serum revealed that a high level of soluble MICA at baseline was correlated with a downregulation of NK cell activation markers and progressive disease. Unexpectedly, flow cytometry showed that NEO-201 also binds to circulating regulatory T cells and reduction of the quantities of these cells was observed especially in patients with SD. CONCLUSIONS NEO-201 was safe and well tolerated at the MTD of 1.5 mg/kg, with neutropenia being the most common adverse event. Furthermore, a reduction in the percentage of regulatory T cells following NEO-201 treatment supports our ongoing phase II clinical trial evaluating the efficiency of the combination of NEO-201 with the immune checkpoint inhibitor pembrolizumab in adults with treatment-resistant solid tumors. TRIAL REGISTRATION NCT03476681 . Registered 03/26/2018.
Collapse
Affiliation(s)
- Christopher B Cole
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Pia Morelli
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Markku Miettinen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Fetsch
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cody Peer
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William D Figg
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tyler Yin
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Houston
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ann McCoy
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra Zimmer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miroslava Pavelova
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erin N Villanueva
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn Trewhitt
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - B Brooke Solarz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Fergusson
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Anjum Zaki
- Precision Biologics, Inc, Bethesda, MD, USA
| | | | | | - Christina M Annunziata
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Tsang KY, Fantini M, Mavroukakis SA, Zaki A, Annunziata CM, Arlen PM. Development and Characterization of an Anti-Cancer Monoclonal Antibody for Treatment of Human Carcinomas. Cancers (Basel) 2022; 14:cancers14133037. [PMID: 35804808 PMCID: PMC9264992 DOI: 10.3390/cancers14133037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
NEO-201 is an IgG1 humanized monoclonal antibody (mAb) that binds to tumor-associated variants of carcinoembryonic antigen-related cell adhesion molecule (CEACAM)-5 and CEACAM-6. NEO-201 reacts to colon, ovarian, pancreatic, non-small cell lung, head and neck, cervical, uterine and breast cancers, but is not reactive against most normal tissues. NEO-201 can kill tumor cells via antibody-dependent cell-mediated cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC) to directly kill tumor cells expressing its target. We explored indirect mechanisms of its action that may enhance immune tumor killing. NEO-201 can block the interaction between CEACAM-5 expressed on tumor cells and CEACAM-1 expressed on natural killer (NK) cells to reverse CEACAM-1-dependent inhibition of NK cytotoxicity. Previous studies have demonstrated safety/tolerability in non-human primates, and in a first in human phase 1 clinical trial at the National Cancer Institute (NCI). In addition, preclinical studies have demonstrated that NEO-201 can bind to human regulatory T (Treg) cells. The specificity of NEO-201 in recognizing suppressive Treg cells provides the basis for combination cancer immunotherapy with checkpoint inhibitors targeting the PD-1/PD-L1 pathway.
Collapse
Affiliation(s)
- Kwong yok Tsang
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
- Correspondence: ; Tel.: +1-301-500-8646
| | - Massimo Fantini
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| | - Sharon A. Mavroukakis
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| | - Anjum Zaki
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| | - Christina M. Annunziata
- Women’s Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Philip M. Arlen
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| |
Collapse
|
7
|
Lake CM, Voss K, Bauman BM, Pohida K, Jiang T, Dveksler G, Snow AL. TIM-3 drives temporal differences in restimulation-induced cell death sensitivity in effector CD8 + T cells in conjunction with CEACAM1. Cell Death Dis 2021; 12:400. [PMID: 33854046 PMCID: PMC8046753 DOI: 10.1038/s41419-021-03689-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Immune homeostasis depends upon effective clearance of pathogens while simultaneously preventing autoimmunity and immunopathology in the host. Restimulation-induced cell death (RICD) is one such mechanism where by activated T cells receive subsequent antigenic stimulation, reach a critical signal threshold through the T cell receptor (TCR), and commit to apoptosis. Many details of this process remain unclear, including the role of co-stimulatory and co-inhibitory proteins that influence the TCR signaling cascade. Here we characterize the role of T cell immunoglobulin and mucin domain containing 3 (TIM-3) in RICD regulation. TIM-3 protected newly activated CD8+ effector T cells from premature RICD during clonal expansion. Surprisingly, however, we found that TIM-3 potentiated RICD in late-stage effector T cells. The presence of TIM-3 increased proximal TCR signaling and proapoptotic protein expression in late-stage effector T cells, with no consistent signaling effects noted in newly activated cells with or without TIM-3. To better explain these differences in TIM-3 function as T cells aged, we characterized the temporal pattern of TIM-3 expression in effector T cells. We found that TIM-3 was expressed on the surface of newly activated effector T cells, but remained largely intracellular in late-stage effector cells. Consistent with this, TIM-3 required a ligand to prevent early RICD, whereas ligand manipulation had no effects at later stages. Of the known TIM-3 ligands, carcinoembryonic antigen-related cell adhesion molecule (CEACAM1) showed the greatest difference in surface expression over time and also protected newly activated cells from premature RICD, with no measurable effects in late-stage effectors. Indeed, CEACAM1 enabled TIM-3 surface expression on T cells, implying a co-dependency for these proteins in protecting expanding T cells from premature RICD. Our findings suggest that co-signaling proteins like TIM-3 and CEACAM1 can alter RICD sensitivity at different stages of the effector T cell response, with important implications for checkpoint blockade therapy.
Collapse
Affiliation(s)
- Camille M Lake
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20817, USA
- Henry M. Jackson Foundation, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Kelsey Voss
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20817, USA
- Henry M. Jackson Foundation, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Bradly M Bauman
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20817, USA
- Henry M. Jackson Foundation, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Katherine Pohida
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20817, USA
| | - Timothy Jiang
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20817, USA
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20817, USA
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20817, USA.
| |
Collapse
|
8
|
Kim N, Lee DH, Choi WS, Yi E, Kim H, Kim JM, Jin HS, Kim HS. Harnessing NK cells for cancer immunotherapy: immune checkpoint receptors and chimeric antigen receptors. BMB Rep 2021. [PMID: 33298244 PMCID: PMC7851441 DOI: 10.5483/bmbrep.2021.54.1.214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells, key antitumor effectors of the innate immune system, are endowed with the unique ability to spontaneously eliminate cells undergoing a neoplastic transformation. Given their broad reactivity against diverse types of cancer and close association with cancer prognosis, NK cells have gained considerable attention as a promising therapeutic target for cancer immunotherapy. NK cell-based therapies have demonstrated favorable clinical efficacies in several hematological malignancies but limited success in solid tumors, thus highlighting the need to develop new therapeutic strategies to restore and optimize antitumor activity while preventing tumor immune escape. The current therapeutic modalities yielding encouraging results in clinical trials include the blockade of immune checkpoint receptors to overcome the immune-evasion mechanism used by tumors and the incorporation of tumor-directed chimeric antigen receptors to enhance NK cell antitumor specificity and activity. These observations, together with recent advances in the understanding of NK cell activation within the tumor microenvironment, will facilitate the optimal design of NK cell-based therapy against a broad range of cancers and, more desirably, refractory cancers.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Convergence MedicineAsan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Dong-Hee Lee
- Department of Convergence MedicineAsan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Woo Seon Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Stem Cell Immunomodulation Research Center (SCIRC), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eunbi Yi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Stem Cell Immunomodulation Research Center (SCIRC), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - HyoJeong Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Stem Cell Immunomodulation Research Center (SCIRC), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jung Min Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyung-Seung Jin
- Department of Convergence MedicineAsan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hun Sik Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Stem Cell Immunomodulation Research Center (SCIRC), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
9
|
Wang F, Lau JKC, Yu J. The role of natural killer cell in gastrointestinal cancer: killer or helper. Oncogene 2021; 40:717-730. [PMID: 33262461 PMCID: PMC7843415 DOI: 10.1038/s41388-020-01561-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 02/08/2023]
Abstract
Gastrointestinal cancer is one of the leading health problems worldwide, with a high morbidity and mortality. To date, harnessing both the innate and adaptive immune system against cancer provides a selective and effective therapeutic strategy for patients. As a first line defense against cancer, natural killer (NK) cells can swiftly target and lyse tumor cells without prior activation. In addition to its pivotal role in innate immunity, NK cells also play unique roles in the adaptive immune system as it enhance anti-tumor adaptive immune responses through secretion of cytokines and retaining an immunological memory. All these characteristics make NK cell a promising anti-cancer agent for patients. In spite of scarce infiltration and impaired function of NK cells in tumors, and the fact that tumors easily develop resistant mechanisms to evade the attacks from endogenous NK cells, multiple strategies have been developed to boost anti-tumor effect of NK cells and abolish tumor resistance. Some examples include adoptive transfer of NK cells after ex vivo activation and expansion; restoration of NK cell function using immune checkpoint inhibitors, and monoclonal antibody or cytokine treatment. Preclinical data have shown encouraging results, suggesting that NK cells hold great potential in cancer therapy. In this review, we discuss NK cells' cytotoxicity and modulation function in GI cancer and the current application in clinical therapy.
Collapse
Affiliation(s)
- Feixue Wang
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Jennie Ka Ching Lau
- Faculty of Medicine, SHHO College, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
10
|
Martinez A, Delord JP, Ayyoub M, Devaud C. Preclinical and Clinical Immunotherapeutic Strategies in Epithelial Ovarian Cancer. Cancers (Basel) 2020; 12:E1761. [PMID: 32630708 PMCID: PMC7409311 DOI: 10.3390/cancers12071761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022] Open
Abstract
In the past 20 years, the immune system has increasingly been recognized as a major player in tumor cell control, leading to considerable advances in cancer treatment. While promising with regards to melanoma, renal cancer and non-small cell lung cancer, immunotherapy provides, for the time being, limited success in other cancers, including ovarian cancer, potentially due to insufficient immunogenicity or to a particularly immunosuppressive microenvironment. In this review, we provide a global description of the immune context of ovarian cancer, in particular epithelial ovarian cancer (EOC). We describe the adaptive and innate components involved in the EOC immune response, including infiltrating tumor-specific T lymphocytes, B lymphocytes, and natural killer and myeloid cells. In addition, we highlight the rationale behind the use of EOC preclinical mouse models to assess resistance to immunotherapy, and we summarize the main preclinical studies that yielded anti-EOC immunotherapeutic strategies. Finally, we focus on major published or ongoing immunotherapy clinical trials concerning EOC.
Collapse
Affiliation(s)
- Alejandra Martinez
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Department of Surgery, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse (IUCT), 31037 Toulouse, France
| | - Jean-Pierre Delord
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Department of Medical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, 31037 Toulouse, France
- Université Toulouse III Paul Sabatier, 31037 Toulouse, France
| | - Maha Ayyoub
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Université Toulouse III Paul Sabatier, 31037 Toulouse, France
- Immune Monitoring Core Facility, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, 31037 Toulouse, France
| | - Christel Devaud
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Immune Monitoring Core Facility, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, 31037 Toulouse, France
| |
Collapse
|
11
|
Zeligs KP, Morelli MP, David JM, Neuman M, Hernandez L, Hewitt S, Ozaki M, Osei-Tutu A, Anderson D, Andresson T, Das S, Lack J, Abdelmaksoud A, Fantini M, Arlen PM, Tsang KY, Annunziata CM. Evaluation of the Anti-Tumor Activity of the Humanized Monoclonal Antibody NEO-201 in Preclinical Models of Ovarian Cancer. Front Oncol 2020; 10:805. [PMID: 32637350 PMCID: PMC7318110 DOI: 10.3389/fonc.2020.00805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/23/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose: Despite high initial response rates with cytoreductive surgery, conventional chemotherapy and the incorporation of biologic agents, ovarian cancer patients often relapse and die from their disease. New approaches are needed to improve patient outcomes. This study was designed to evaluate the antitumor activity of NEO-201 monoclonal antibody (mAb) in preclinical models of ovarian cancer where the NEO-201 target is highly expressed. Experimental Design: Functional analysis of NEO-201 against tumor cell lines was performed by antibody-dependent cellular cytotoxicity (ADCC) assays. Binding of NEO-201 to tumor tissues and cell lines were determined by immunohistochemistry (IHC) and flow cytometry, respectively. Further characterization of the antigen recognized by NEO-201 was performed by mass spectrometry. Ovarian cancer models were used to evaluate the anti-tumor activity of NEO-201 in vivo. NEO-201 at a concentration of 250 g/mouse was injected intraperitoneally (IP) on days 1, 4, and 8. Human PBMCs were injected IP simultaneously as effector cells. Results: Both IHC and flow cytometry revealed that NEO-201 binds prominently to the colon, pancreatic, and mucinous ovarian cancer tissues and cell lines. Immunoprecipitation of the antigen recognized by NEO-201 was performed in human ovarian, colon, and pancreatic cancer cell lines. From these screening, carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) and CEACAM6 were identified as the most likely targets of NEO-201. Our results confirmed that NEO-201 binds different types of cancers; the binding is highly selective for the tumor cells without cross reactivity with the surrounding healthy tissue. Functional analysis revealed that NEO-201 mediates ADCC killing against human ovarian and colorectal carcinoma cell lines in vitro. In addition, NEO-201 inhibited tumor growth in the presence of activated human PBMCs in orthotopic mouse models of both primary and metastatic ovarian cancer. Importantly, NEO-201 prolonged survival of tumor-bearing mice. Conclusions: These data suggested that NEO-201 has an antitumor activity against tumor cells expressing its antigen. Targeting an antigen expressed in tumors, but not in normal tissues, allows patient selection for optimal treatment. These findings strongly indicate that NEO-201 warrants clinical testing as both a novel therapeutic and diagnostic agent for treatment of ovarian carcinomas. A first in human clinical trial evaluating NEO-201 in adults with chemo-resistant solid tumors is ongoing at the NIH clinical Center.
Collapse
Affiliation(s)
- Kristen P Zeligs
- Women's Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Maria Pia Morelli
- Women's Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Monica Neuman
- Women's Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lidia Hernandez
- Women's Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Stephen Hewitt
- Women's Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Michelle Ozaki
- Women's Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Akosua Osei-Tutu
- Women's Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - David Anderson
- Women's Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Thorkell Andresson
- Protein Characterization Laboratory of the Cancer Research Program (CRTP)/Mass Spectrometry Center, National Institutes of Health, Fredrick, MD, United States
| | - Sudipto Das
- Protein Characterization Laboratory of the Cancer Research Program (CRTP)/Mass Spectrometry Center, National Institutes of Health, Fredrick, MD, United States
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Frederick National Laboratory for Cancer Research, Advanced Biomedical Computational Science, Fredrick, MD, United States
| | - Abdalla Abdelmaksoud
- Frederick National Laboratory for Cancer Research, Advanced Biomedical Computational Science, Fredrick, MD, United States.,Frederick National Laboratory for Cancer Research, CCR Collaborative Bioinformatics Resource, Fredrick, MD, United States
| | | | | | - Kwong Y Tsang
- Precision Biologics, Inc., Bethesda, MD, United States
| | - Christina M Annunziata
- Women's Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|