1
|
Zhang W, Han J, Wan P, Zhang M, Chang Y, Yan Y, Meng H, Hou M, Jin T. Variants of KLF5 and KLF12 were related to endometrial cancer risk in the Chinese population. Expert Rev Mol Diagn 2024:1-9. [PMID: 39648324 DOI: 10.1080/14737159.2024.2436394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVES Krüppel‑like factors (KLFs) are implicated in the progression of endometrial cancer (EC). This present study explored the correlation between variants of KLF5, KLF12 and EC risk in the Chinese population. METHODS The Agena MassARRAY technology platform was utilized to genotype six single nucleotide polymorphisms (SNPs) in KLF5 and KLF12 genes among 509 women diagnosed with EC and 506 age-matched healthy women. Subsequently, the relationship between SNPs in KLF5 and KLF12 and EC risk was calculated using logistic regression analysis. The interactions between SNPs in KLF5 and KLF12 were analyzed to predict EC risk using multifactor dimensionality reduction (MDR) analysis. RESULTS KLF12 rs12429889 was significantly associated with EC risk (codominant: OR = 1.53, p = 0.003; dominant: OR = 1.54, p = 0.004). In addition, rs7329599 was significantly associated with EC risk in participants aged ≤55 years (codominant: OR = 0.63, p = 0.014; dominant: OR = 0.67, p = 0.024), whereas rs12429889 was significantly associated with EC risk in participants aged >55 years (codominant: OR = 1.98, p = 0.004; dominant: OR = 2.06, p = 0.002). CONCLUSION Our findings revealed a significant correlation between KLF12 rs12429889 and rs7329599 and EC risk, highlighting their potential as diagnostic biomarkers. [Figure: see text].
Collapse
Affiliation(s)
- Wenjing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Junhui Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Panpan Wan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Man Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Yanting Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Yan Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Hang Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Mengnan Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Kotwal A, Goldner WS, Bennett RG. Role of Relaxin Signaling in Cancer: A Review. Biochem Pharmacol 2024; 230:116634. [PMID: 39547477 DOI: 10.1016/j.bcp.2024.116634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The investigation into relaxin (RLN), additional RLN-like proteins, and RLN family peptide receptors (RXFP) has demonstrated their role in modulating the extracellular matrix (ECM), immune cells, specifically macrophages, and angiogenesis, with recent evidence showing an effect on signaling pathways in tumor cells. These findings serve as the basis for our narrative review to collate pertinent studies in this field and provide our perspective on their clinical and investigational significance. In the article, we discuss findings from pertinent studies focusing on evaluating the expression or effect of RLN1, RLN2, or RXFP1 in various cancers. We also briefly discuss the potential role that other RLN family peptides and their receptors play in cancer. Specifically, we delve into questions regarding RLN signaling in terms of parity/pregnancy-associated protection from mammary tumors, expression in tumors, detection in serum in the setting of cancers, effect on tumor-adjacent cells, effect on tumorigenesis depending on endogenous expression or delivery, and last, but not the least, impact on the effectiveness of anti-cancer therapies. We expect that summarizing the available literature to answer these questions will allow readers to understand the role of RLN-receptor interaction in cancer as well as identify areas of uncertainty and avenues for future investigation.
Collapse
Affiliation(s)
- Anupam Kotwal
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Whitney S Goldner
- Department of Internal Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, USA
| | - Robert G Bennett
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
3
|
Zhang Z, Guo J, Gong C, Wu S, Sun Y. KIAA1429-mediated RXFP1 attenuates non-small cell lung cancer tumorigenesis via N6-methyladenosine modification. Cancer Biomark 2024:CBM230188. [PMID: 38427468 DOI: 10.3233/cbm-230188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) modification has been associated with non-small cell lung cancer (NSCLC) tumorigenesis. OBJECTIVES This study aimed to determine the functions of Vir-like m6A methyltransferase-associated (KIAA1429) and relaxin family peptide receptor 1 (RXFP1) in NSCLC. METHODS A quantitative real-time polymerase chain reaction was used to analyze the mRNA levels of KIAA1429 and RXFP1 in NSCLC. After silencing KIAA1429 or RXFP1 in NSCLC cells, changes in the malignant phenotypes of NSCLC cells were assessed using cell counting kit-8, colony formation, and transwell assays. Finally, the m6A modification of RXFP1 mediated by KIAA1429 was confirmed using luciferase, methylated RNA immunoprecipitation, and western blot assays. RESULTS KIAA1429 and RXFP1 were upregulated and downregulated in NSCLC, respectively. Silencing of KIAA1429 attenuated the viability, migration, and invasion of NSCLC cells, whereas silencing of RXFP1 showed the opposite function in NSCLC cells. Moreover, RXFP1 expression was inhibited by KIAA1429 via m6A-modification. Therefore, silencing RXFP1 reversed the inhibitory effect of KIAA1429 knockdown in NSCLC cells. CONCLUSION Our findings confirmed that the KIAA1429/RXFP1 axis promotes NSCLC tumorigenesis. This is the first study to reveal the inhibitory function of RXFP1 in NSCLC via KIAA1429-mediated m6A-modification. These findings may help identify new biomarkers for targeted NSCLC therapy.
Collapse
Affiliation(s)
- Zhixiang Zhang
- Department of Medical Laboratory, Wuhan Third Hospital, Wuhan, Hubei, China
- Department of Medical Laboratory, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Jipeng Guo
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Medical Laboratory, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Chongwen Gong
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Medical Laboratory, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Sai Wu
- Department of Thoracic Surgery, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Yanlei Sun
- Department of Endocrinology, Wuhan Third Hospital, Wuhan, Hubei, China
| |
Collapse
|
4
|
Zhang Y, Tang Y, Chen X, Sun X, Zhao M, Chen Q. Therapeutic potential of miRNAs in placental extracellular vesicles in ovarian and endometrial cancer. Hum Cell 2024; 37:285-296. [PMID: 37801261 DOI: 10.1007/s13577-023-00986-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
There is a cross-link between the placenta and cancer development, as the placenta is grown as a highly invasive tumour-like organ. However, placental development is strictly controlled. Although the underlying mechanism of this control is largely unknown, it is now well-recognised that extracellular vesicles (EVs) released from the placenta play an important role in controlling placenta proliferation and invasion, as placental EVs have shown their effect on regulating maternal adaptation. Better understanding the tumour-like mechanism of the placenta could help to develop a therapeutic potential in cancers. In this study, by RNA sequencing of placental EVs, 20 highly expressed microRNAs (miRNAs) in placental EVs were selected and analysed for their functions on ovarian and endometrial cancer. There were up to seven enriched miRNAs, including miRNA-199a-3p, miRNA-143-3p, and miRNA-519a-5p in placental EVs showing effects on the inhibition of ovarian and endometrial cancer cell proliferation and migration, and promotion of cancer cell death, reported in the literature. Most of these miRNAs have been reported to be downregulated in ovarian and endometrial cancer. Transfection of ovarian and endometrial cancer cells with mimics of miRNA-199a-3p, miRNA-143-3p, and miRNA-519a-5p significantly reduced the cell viability. Our findings could provide strategies for using these naturally occurring miRNAs to develop a novel method to treat ovarian and endometrial cancer in the future.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Obstetrics & Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Yunhui Tang
- Department of Family Planning, The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China
| | - Xinyue Chen
- Department of Obstetrics & Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Xinyi Sun
- Department of Obstetrics & Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Min Zhao
- Department of Gynaecological Cancer, Wuxi School of Medicine, Wuxi Maternity and Child Health Hospital, Jiangnan University, Wuxi, Jiangsu, China.
| | - Qi Chen
- Department of Obstetrics & Gynaecology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Wang M, Chen X, Zhang H, Li L, Xu Y, Lu W, Lu Y. ENSMUST00000147869 regulates proliferation and fibrosis of mesangial cells in diabetic nephropathy by interacting with Hspa9. IUBMB Life 2022; 74:419-432. [PMID: 35103378 DOI: 10.1002/iub.2599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 11/07/2022]
Abstract
AIMS Our previous study showed that ENSMUST00000147869 was abnormally low expressed in the early stage of diabetic nephropathy (DN). ENSMUST00000147869 could inhibit the fibrosis and proliferation of mouse mesangial cells (MMCs), but the mechanism is still unclear. This study aims to explore the specific mechanism underline ENSMUST00000147869 regulates the proliferation and fibrosis of MMCs in DN. METHODS Nucleocytoplasmic fractionation was applied to define the location of ENSMUST00000147869 in MMCs. RNA-protein pulldown, RNA immunoprecipitation and mass spectrometry were used to identify upregulated Hspa9 directly interacting with ENSMUST00000147869. SiRNA and lentivirus packaging were used to clarify the role of Hspa9 downregulated by ENSMUST00000147869 in promoting proliferation and fibrosis in MMCs. CHX and MG132 were used to clarify the regulatory role of ENSMUST00000147869 to Hspa9. Immunoprecipitation confirmed the binding of Hspa9 and HMGB1. RESULTS HSPA9 was a direct binding protein of ENSMUST00000147869, and ENSMUST00000147869 could inhibit proliferation and fibrosis of MMCs by down-regulating HSPA9 through ubiquitination process. HMGB1 was the downstream binding protein of Hspa9, and ENSMUST00000147869 could inhibit the interaction between Hspa9 and HMGB1. CONCLUSION Our data showed that ENSMUST00000147869 regulates Hspa9 through the ubiquitin proteasome pathway, and inhibits the binding of Hspa9 and HMGB1. ENSMUST00000147869/Hspa9/HMGB1 axis may act as a diagnostic molecular marker and an effective therapeutic target for DN. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Min Wang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xin Chen
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Henglu Zhang
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Lanlan Li
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yang Xu
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Weiping Lu
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yibing Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Yu L, Zhang W, Wang P, Zhang Q, Cong A, Yang X, Sang K. LncRNA SNHG11 aggravates cell proliferation and migration in triple-negative breast cancer via sponging miR-2355-5p and targeting CBX5. Exp Ther Med 2021; 22:892. [PMID: 34257707 PMCID: PMC8243335 DOI: 10.3892/etm.2021.10324] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most common malignances worldwide. Concurrently, the incidence of TNBC has continued to rise in recent years. It is reported that long non-coding RNAs (lncRNAs) are involved in biological processes in numerous cancers including TNBC. Small nucleolar RNA host gene 11 (SNHG11) has already been studied and reported in some cancers. However, the role of SNHG11 in TNBC remains unknown. RT-qPCR was used to measure gene expression in the current study. CCK-8, colony formation, flow cytometry, Transwell and western blotting experiments were also performed to determine the biological function of SNHG11 in TNBC cells. Luciferase reporter and RIP assays were performed to measure relationship between genes. In the present study, the results indicated SNHG11 was highly expressed in TNBC tissues and cell lines. Moreover, SNHG11 aggravated cell proliferation and migration, and whereas it attenuated cell apoptosis in TNBC. Furthermore, SNHG11 sponged microRNA 2355-5p (miR-2355-5p) in TNBC. Silencing SNHG11 increased miR-2355-5p expression. In addition, chromobox 5 (CBX5) was identified to be targeted by miR-2355-5p in TNBC. It was also suggested that CBX5 silencing suppressed cell proliferation and migration. Furthermore, overexpressed CBX5 recovered the inhibitive influence of SNHG11 silencing on proliferative and migrative abilities of TNBC cells. Overall, SNHG11 acted as a tumor promoter in TNBC and regulated TNBC cell growth by modulating the miR-2355-5p/CBX5 axis, which indicated that it may be used as a biomarker for TNBC treatment.
Collapse
Affiliation(s)
- Lei Yu
- Department of Oncology, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Wei Zhang
- Department of Infectious Diseases, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Peng Wang
- Department of Oncology, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Qi Zhang
- Department of Oncology, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Aihua Cong
- Department of Oncology, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Xiuyuan Yang
- Department of Oncology, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Kai Sang
- Department of Breast Surgery, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
7
|
Rao J, Shao L, Lin M, Huang J, Fan L. LncRNA UCA1 Accelerates the Progression of Ulcerative Colitis via Mediating the miR-331-3p/BRD4 Axis. Int J Gen Med 2021; 14:2427-2435. [PMID: 34140798 PMCID: PMC8203302 DOI: 10.2147/ijgm.s304837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
Background Ulcerative colitis (UC) has become one of the fastest-growing severe diseases worldwide with high morbidity. This research aimed to explore the function of lncRNA UCA1 in UC progression. Methods RT-qPCR analysis was used to examine the expression of UCA1 level in colonic mucosa tissues of UC patients. Then, fetal human cells (FHCs) were stimulated by LPS to induce inflammatory injury. CCK-8, flow cytometry and ELISA were adopted to determine the influence of UCA1 depletion on cell viability, apoptosis and pro-inflammatory factors levels in LPS-induced FHCs. The interaction between UCA1 and miR-331-3p or BRD4 was confirmed by luciferase reporter assay. The expressions of key factors involved in NF-κB pathway were assessed by Western blotting. Results LncRNA UCA1 level was elevated in colonic mucosa tissues of UC patients. LPS stimulation restrained cell viability and promoted the apoptosis and inflammatory factors levels, thus inducing FHCs inflammatory injury, while these effects were partially abolished by UCA1 knockdown. Moreover, it was found that UCA1 silence improved LPS-triggered cell injury via miR-331-3p. In addition, BRD4 was directly targeted by miR-331-3p, and BRD4 deficiency neutralized the effects of miR-331-3p repression on LPS-triggered injury in LPS-treated FHCs. Conclusion Our data determined that UCA1 knockdown attenuated UC development via targeting the miR-331-3p/BRD4/NF-κB pathway.
Collapse
Affiliation(s)
- Jun Rao
- Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - Lihua Shao
- Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - Min Lin
- Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - Jin Huang
- Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - Li Fan
- Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| |
Collapse
|
8
|
Luo Y, Chen C. The roles and regulation of the KLF5 transcription factor in cancers. Cancer Sci 2021; 112:2097-2117. [PMID: 33811715 PMCID: PMC8177779 DOI: 10.1111/cas.14910] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Krüppel‐like factor 5 (KLF5) is a member of the KLF family. Recent studies have suggested that KLF5 regulates the expression of a large number of new target genes and participates in diverse cellular functions, such as stemness, proliferation, apoptosis, autophagy, and migration. In response to multiple signaling pathways, various transcriptional modulation and posttranslational modifications affect the expression level and activity of KLF5. Several transgenic mouse models have revealed the physiological and pathological functions of KLF5 in different cancers. Studies of KLF5 will provide prognostic biomarkers, therapeutic targets, and potential drugs for cancers.
Collapse
Affiliation(s)
- Yao Luo
- Medical Faculty of Kunming University of Science and Technology, Kunming, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|