1
|
Samirae L, Krausewitz P, Alajati A, Kristiansen G, Ritter M, Ellinger J. The relevance of circRNAs in serum of patients undergoing prostate biopsy. Int J Urol 2024; 31:578-580. [PMID: 38363018 PMCID: PMC11524117 DOI: 10.1111/iju.15414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Affiliation(s)
- Lara Samirae
- Universitätsklinikum BonnKlinik und Poliklinik für Urologie und KinderurologieBonnGermany
| | - Philipp Krausewitz
- Universitätsklinikum BonnKlinik und Poliklinik für Urologie und KinderurologieBonnGermany
| | - Abdullah Alajati
- Universitätsklinikum BonnKlinik und Poliklinik für Urologie und KinderurologieBonnGermany
| | | | - Manuel Ritter
- Universitätsklinikum BonnKlinik und Poliklinik für Urologie und KinderurologieBonnGermany
| | - Jörg Ellinger
- Universitätsklinikum BonnKlinik und Poliklinik für Urologie und KinderurologieBonnGermany
| |
Collapse
|
2
|
Sang H, Li L, Zhao Q, Liu Y, Hu J, Niu P, Hao Z, Chai K. The regulatory process and practical significance of non-coding RNA in the dissemination of prostate cancer to the skeletal system. Front Oncol 2024; 14:1358422. [PMID: 38577343 PMCID: PMC10991771 DOI: 10.3389/fonc.2024.1358422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Prostate cancer is a major contributor to male cancer-related mortality globally. It has a particular affinity for the skeletal system with metastasis to bones seriously impacting prognosis. The identification of prostate cancer biomarkers can significantly enhance diagnosis and patient monitoring. Research has found that cancer and metastases exhibit abnormal expression of numerous non-coding RNA. Some of these RNA facilitate prostate cancer bone metastasis by activating downstream signaling pathways, while others inhibit this process. Elucidating the functional processes of non-coding RNA in prostate cancer bone metastasis will likely lead to innovative treatment strategies for this malignant condition. In this review, the mechanistic role of the various RNA in prostate cancer is examined. Our goal is to provide a new avenue of approach to the diagnosis and treatment of bone metastasis in this cancer.
Collapse
Affiliation(s)
- Hui Sang
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Luxi Li
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Qiang Zhao
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Yulin Liu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Jinbo Hu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Peng Niu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Zhenming Hao
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Keqiang Chai
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| |
Collapse
|
3
|
The Dual Role of PDCD10 in Cancers: A Promising Therapeutic Target. Cancers (Basel) 2022; 14:cancers14235986. [PMID: 36497468 PMCID: PMC9740655 DOI: 10.3390/cancers14235986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death 10 (PDCD10) was initially considered as a protein associated with apoptosis. However, recent studies showed that PDCD10 is actually an adaptor protein. By interacting with multiple molecules, PDCD10 participates in various physiological processes, such as cell survival, migration, cell differentiation, vesicle trafficking, cellular senescence, neurovascular development, and gonadogenesis. Moreover, over the past few decades, accumulating evidence has demonstrated that the aberrant expression or mutation of PDCD10 is extremely common in various pathological processes, especially in cancers. The dysfunction of PDCD10 has been strongly implicated in oncogenesis and tumor progression. However, the updated data seem to indicate that PDCD10 has a dual role (either pro- or anti-tumor effects) in various cancer types, depending on cell/tissue specificity with different cellular interactors. In this review, we aimed to summarize the knowledge of the dual role of PDCD10 in cancers with a special focus on its cellular function and potential molecular mechanism. With these efforts, we hoped to provide new insight into the future development and application of PDCD10 as a clinical therapeutic target in cancers.
Collapse
|
4
|
Firoozi Z, Mohammadisoleimani E, Dastsooz H, Daraei A, Dastgheib SA, Raoofat A, Mansoori H, Mansoori Y, Naghizadeh MM. Altered Expression of hsa_circ_0001445 and hsa_circ_0020397 in Breast Cancer Representing Associations with BMI and Reproductive Factors. ARCHIVES OF IRANIAN MEDICINE 2022; 25:817-827. [PMID: 37543909 PMCID: PMC10685847 DOI: 10.34172/aim.2022.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/21/2021] [Indexed: 08/08/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs), one of the recent subclasses of non-coding RNAs (ncRNAs), show pivotal functions in regulation of gene expression and have significant roles in malignancies including breast cancer (BC). This study was aimed to assess the hsa_circ_0001445 and hsa_circ_0020397 expression and role in BC, as well as the potential circRNA/miRNA/mRNA crosstalk in these contexts. METHODS The expression of hsa_circ_0001445 and hsa_circ_0020397 in 50 breast tumors and 50 normal tissues adjacent to the tumors was investigated using quantitative real-time polymerase chain reaction (qRT-PCR). Finally, bioinformatics analyses were used to uncover hsa_circ_0001445, hsa_circ_0020397-miRNA-mRNA potential regulatory networks. RESULTS The hsa_circ_0001445 expression was considerably downregulated in malignant tissues compared to their normal counterparts (P=0.020), while the hsa_circ_0020397 showed an upregulated pattern (P<0.001). Additionally, it was observed that the higher expression of hsa_circ_0001445 was associated with hair dye avoidance (P=0.034) and normal body mass index (BMI) (P=0.016) while hsa_circ_0020397 over-expression had an important association with a lack of vitamin D consumption (P=0.039). On the other hand, lower expression of hsa_circ_0001445 was significantly associated with age at menarche ˂14 years (P=0.027). Our study also revealed that the two circRNAs have potential ability to regulate key mRNAs and miRNAs in competing endogenous RNA (ceRNA) networks. CONCLUSION It is suggested that hsa_circ_0001445 and hsa_circ_0020397 with two opposite roles may be involved in BC development through sponging some miRNAs regulating ceRNA networks. However, their molecular interactions should be validated by further functional studies.
Collapse
Affiliation(s)
- Zahra Firoozi
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Hassan Dastsooz
- IIGM-Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo Cancer (IT), Torino, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina, Turin, Italy
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Raoofat
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hosein Mansoori
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | |
Collapse
|
5
|
circSMARCA5 Is an Upstream Regulator of the Expression of miR-126-3p, miR-515-5p, and Their mRNA Targets, Insulin-like Growth Factor Binding Protein 2 ( IGFBP2) and NRAS Proto-Oncogene, GTPase ( NRAS) in Glioblastoma. Int J Mol Sci 2022; 23:ijms232213676. [PMID: 36430152 PMCID: PMC9690846 DOI: 10.3390/ijms232213676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022] Open
Abstract
The involvement of non-coding RNAs (ncRNAs) in glioblastoma multiforme (GBM) pathogenesis and progression has been ascertained but their cross-talk within GBM cells remains elusive. We previously demonstrated the role of circSMARCA5 as a tumor suppressor (TS) in GBM. In this paper, we explore the involvement of circSMARCA5 in the control of microRNA (miRNA) expression in GBM. By using TaqMan® low-density arrays, the expression of 748 miRNAs was assayed in U87MG overexpressing circSMARCA5. Differentially expressed (DE) miRNAs were validated through single TaqMan® assays in: (i) U87MG overexpressing circSMARCA5; (ii) four additional GBM cell lines (A172; CAS-1; SNB-19; U251MG); (iii) thirty-eight GBM biopsies; (iv) twenty biopsies of unaffected brain parenchyma (UC). Validated targets of DE miRNAs were selected from the databases TarBase and miRTarbase, and the literature; their expression was inferred from the GBM TCGA dataset. Expression was assayed in U87MG overexpressing circSMARCA5, GBM cell lines, and biopsies through real-time PCR. TS miRNAs 126-3p and 515-5p were upregulated following circSMARCA5 overexpression in U87MG and their expression was positively correlated with that of circSMARCA5 (r-values = 0.49 and 0.50, p-values = 9 × 10-5 and 7 × 10-5, respectively) in GBM biopsies. Among targets, IGFBP2 (target of miR-126-3p) and NRAS (target of miR-515-5p) mRNAs were positively correlated (r-value = 0.46, p-value = 0.00027), while their expression was negatively correlated with that of circSMARCA5 (r-values = -0.58 and -0.30, p-values = 0 and 0.019, respectively), miR-126-3p (r-value = -0.36, p-value = 0.0066), and miR-515-5p (r-value = -0.34, p-value = 0.010), respectively. Our data identified a new GBM subnetwork controlled by circSMARCA5, which regulates downstream miRNAs 126-3p and 515-5p, and their mRNA targets IGFBP2 and NRAS.
Collapse
|
6
|
Xie J, Jiang H, Zhao Y, Jin XR, Li B, Zhu Z, Zhang L, Liu J. Prognostic and diagnostic value of circRNA expression in prostate cancer: A systematic review and meta-analysis. Front Oncol 2022; 12:945143. [PMID: 36419885 PMCID: PMC9676972 DOI: 10.3389/fonc.2022.945143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/10/2022] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are receiving increasing attention as novel biomarkers. Our goal was to investigate the diagnostic, clinicopathological, and prognostic utility of circRNAs in prostate cancer (PCa). METHODS Relevant literature was searched in PubMed, Web of Science, and EMBASE. Sensitivity, specificity, diagnostic odds ratio (DOR), negative likelihood ratio (NLR), positive likelihood ratio (PLR), and the area under the curve (AUC) were calculated to evaluate the diagnostic accuracy of circRNA expression. circRNAs' clinical, pathological, and prognostic value was examined using pooled odds ratios (ORs) and hazard ratios (HRs). RESULTS This meta-analysis included 23 studies, with 5 for diagnosis, 16 for clinicopathological parameters, and 10 for prognosis. For diagnostic value, the pooled sensitivity, pooled specificity, PLR, NLR, DOR, and AUC were 0.82, 0.62, 2.17, 0.29, 7.37, and 0.81, respectively. Upregulation of carcinogenic circRNAs was associated with poor clinical parameters (Gleason score: OR = 0.222, 95% CI: 0.145-0.340; T classification: OR = 0.274, 95% CI: 0.175-0.430; lymph node metastasis: OR = 0.353, 95% CI: 0.175-0.716; tumor size: OR = 0.226, 95% CI: 0.099-0.518) and could predict poor survival outcomes (HR = 2.408, 95% CI: 1.559-3.720, p < 0.001). Conversely, downregulation of tumor-suppressor circRNAs was also associated with poor clinical parameters (Gleason score: OR = 1.689, 95% CI: 1.144-2.493; T classification: OR = 2.586, 95% CI: 1.779-3.762) and worse prognosis (HR = 1.739, 95% CI: 1.147-2.576, p = 0.006). CONCLUSION Our results showed that circRNAs might be useful biomarkers for the diagnosis and prognosis of PCa. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier CRD42021284785.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Pan-Cancer Analysis on the Oncogenic Role of Programmed Cell Death 10. JOURNAL OF ONCOLOGY 2022; 2022:1242658. [PMID: 36276268 PMCID: PMC9584704 DOI: 10.1155/2022/1242658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Purpose Programmed cell death factor 10 (PDCD10) is associated with intercellular junction, cytoskeleton organization, cell proliferation, apoptosis, exocytosis, and angiogenesis. However, the role of PDCD10 in human cancer is unclear. This study aims to explore the role of PDCD10 in various tumors and its possible mechanism through bioinformatics analysis. Methods We verified the expression of the PDCD10 gene based on data from the ONCOMINE, TIMER2.0, and TISDB databases. The correlation of PDCD10 with prognosis of patients with different tumors was analyzed using data from the GEPIA2 database. Proteins bound to PDCD10 were analyzed from the STRING database. PDCD10, PDCD10-binding proteins, and associated candidate genes were analyzed in DAVID for functional and pathway analyses. We also evaluated the immunological, clinical, and genetic aspects of distinct cancers by using TIMER2.0 and the connection between PDCD10 expression and tumor immune subtypes by using TISDB. Single-cell sequencing data from the CancerSEA database were used to characterize cancer cell functional states and generate heat maps. Results PDCD10 overexpression is linked to certain molecular subtypes of human cancer. Low PDCD10 expression in patients with bladder urothelial carcinoma (BLCA), lung adenocarcinoma (LUAD), liver hepatocellular carcinoma (LIHC), adrenocortical carcinoma (ACC), head and neck squamous cell carcinoma (HNSC), kidney chromophobe carcinoma (KICH), brain lower grade glioma (LGG), pancreatic adenocarcinoma (PAAD), uterine corpus endometrial carcinoma (UCEC), oral squamous cell carcinoma (OSCC), and esophageal adenocarcinoma (ESAD) was correlated with favorable OS, whereas high PDCD10 expression in patients with LUSC, KIRC, READ, SKCM, and THYM was correlated with good prognosis. STRING network prediction results showed that 20 proteins, namely, paxillin (PXN), CCM2 scaffold protein (CCM2), TRAF3 interacting protein 3 (TRAF3IP3), FGFR1 oncogene partner 2 (FGFR1OP2), chromosome 4 open reading frame 19 (C4orf19), suppressor of IKBKE 1 (SIKE1), serine/threonine kinase 25 (STK25), striatin (STRN), protein phosphatase 2 catalytic subunit alpha (PPP2CA), mammalian sterile-20-like kinase 4 (MST4), MOB family member 4 (MOB4), protein phosphatase 2 scaffold subunit Abeta (PPP2R1B), sarcolemma-associated protein (SLMAP), serine/threonine kinase 24 (STK24), striatin 4 (STRN4), STRN3, protein phosphatase 2 scaffold subunit A alpha (PPP2R1A), striatin interacting protein 1 (STRIP1), CTTNBP2 N-terminal like (CTTNBP2NL), and cortactin binding protein 2 (CTTNBP2), can bind to PDCD10. Gene enrichment analysis suggested that PDCD10 is involved in the occurrence of different tumors through the Hippo signalling pathway, RNA transport, mRNA monitoring pathway, endocytosis, and T cell receptor signalling pathway. An inverse relationship was found between PDCD10 expression and cancer-associated fibroblasts in LUSC and TGCT, and PDCD10 expression was strongly connected with immunological subtypes, such as C1 (wound healing), C2 (interferon-gamma dominant), C3 (inflammation), C4 (lymphocyte depletion), C5 (immune silenced), and C6 (TGF-beta dominant). Finally, analysis of single-cell sequencing data revealed that PDCD10 expression is linked to epigenetic reprogramming, DNA repair, cell cycle progression, cell differentiation, inflammation, cell proliferation, cell differentiation, cell invasion, and angiogenesis. Conclusion The results of our investigation demonstrate that PDCD10 has an oncogenic function in many cancer types. This study provides a reference for future research on antitumor therapeutic targets.
Collapse
|
8
|
Karami Fath M, Pourbagher Benam S, Salmani K, Naderi S, Fahham Z, Ghiabi S, Houshmand Kia SA, Naderi M, Darvish M, Barati G. Circular RNAs in neuroblastoma: Pathogenesis, potential biomarker, and therapeutic target. Pathol Res Pract 2022; 238:154094. [PMID: 36087416 DOI: 10.1016/j.prp.2022.154094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
Neuroblastoma (NB) is a common cancer in childhood responsible for 15 % of fatalities by pediatric cancers. Epigenetic factors play an important role in the pathogenesis of NB. Recently, it has been demonstrated that circular RNAs (circRNAs, ciRNAs), a newly identified class of non-coding RNAs, are also dysregulated in NB. CircRNAs mediate their functions by regulating gene expression mainly through microRNA (miRNA) sponging. The dysregulation (abnormal upregulation or downregulation) of circRNAs is involved in tumorigenesis of a variety of tumors including NB. It seems that the expression of some circRNAs is correlated with NB prognosis and clinical features. CircRNAs might be favorable as a diagnostic/prognostic biomarker and therapeutic target. However, due to the lack of studies, it is difficult to make a conclusion regarding the clinical benefits of circRNAs. In this review, we discussed the circRNAs that experimentally have been proved to be dysregulated in NB tissues and cancer cells.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Kiana Salmani
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sina Naderi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Fahham
- Faculty of Biology, Technische Universitat Dresden, Dresden, Germany
| | - Shamim Ghiabi
- Department of Medical Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Malihe Naderi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran; Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Darvish
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | |
Collapse
|
9
|
The Emerging Roles and Clinical Potential of circSMARCA5 in Cancer. Cells 2022; 11:cells11193074. [PMID: 36231036 PMCID: PMC9562909 DOI: 10.3390/cells11193074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are a type of endogenous non-coding RNA and a critical epigenetic regulation way that have a closed-loop structure and are highly stable, conserved, and tissue-specific, and they play an important role in the development of many diseases, including tumors, neurological diseases, and cardiovascular diseases. CircSMARCA5 is a circRNA formed by its parental gene SMARCA5 via back splicing which is dysregulated in expression in a variety of tumors and is involved in tumor development with dual functions as an oncogene or tumor suppressor. It not only serves as a competing endogenous RNA (ceRNA) by binding to various miRNAs, but it also interacts with RNA binding protein (RBP), regulating downstream gene expression; it also aids in DNA damage repair by regulating the transcription and expression of its parental gene. This review systematically summarized the expression and characteristics, dual biological functions, and molecular regulatory mechanisms of circSMARCA5 involved in carcinogenesis and tumor progression as well as the potential applications in early diagnosis and gene targeting therapy in tumors.
Collapse
|
10
|
Galyamina AG, Smagin DA, Kovalenko IL, Redina OE, Babenko VN, Kudryavtseva NN. The Dysfunction of Carcinogenesis- and Apoptosis-Associated Genes that Develops in the Hypothalamus under Chronic Social Defeat Stress in Male Mice. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1050-1064. [PMID: 36180995 DOI: 10.1134/s0006297922090152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Chronic social stress caused by daily agonistic interactions in male mice leads to a mixed anxiety/depression-like disorder that is accompanied by the development of psychogenic immunodeficiency and stimulation of oncogenic processes concurrently with many neurotranscriptomic changes in brain regions. The aim of the study was to identify carcinogenesis- and apoptosis-associated differentially expressed genes (DEGs) in the hypothalamus of male mice with depression-like symptoms and, for comparison, in aggressive male mice with positive social experience. To obtain two groups of animals with the opposite 20-day social experiences, a model of chronic social conflict was used. Analysis of RNA-Seq data revealed similar expression changes for many DEGs between the aggressive and depressed animals in comparison with the control group; however, the number of DEGs was significantly lower in the aggressive than in the depressed mice. It is likely that the observed unidirectional changes in the expression of carcinogenesis- and apoptosis-associated genes in the two experimental groups may be a result of prolonged social stress (of different severity) caused by the agonistic interactions. In addition, 26 DEGs were found that did not change expression in the aggressive animals and could be considered genes promoting carcinogenesis or inhibiting apoptosis. Akt1, Bag6, Foxp4, Mapk3, Mapk8, Nol3, Pdcd10, and Xiap were identified as genes whose expression most strongly correlated with the expression of other DEGs, suggesting that their protein products play a role in coordination of the neurotranscriptomic changes in the hypothalamus. Further research into functions of these genes may be useful for the development of pharmacotherapies for psychosomatic pathologies.
Collapse
Affiliation(s)
- Anna G Galyamina
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitry A Smagin
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Irina L Kovalenko
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Olga E Redina
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Vladimir N Babenko
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalia N Kudryavtseva
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, 199034, Russia
| |
Collapse
|
11
|
Zhu Y, Huang G, Li S, Xiong H, Chen R, Zuo L, Liu H. CircSMARCA5: A key circular RNA in various human diseases. Front Genet 2022; 13:921306. [PMID: 36081987 PMCID: PMC9445203 DOI: 10.3389/fgene.2022.921306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Circular RNAs (circRNAs) are recognized as a novel type of single-stranded endogenous noncoding RNA molecule with the characteristics of tissue specificity, sequence conservation and structural stability. Accumulating studies have shown that circRNAs play a unique biological role in different kinds of diseases. CircRNAs can affect tumor proliferation, migration, metastasis and other behaviors by modulating the expression of downstream genes. CircSMARCA5, an example of a circRNA, is dysregulated in various noninfectious diseases, such as tumors, osteoporosis, atherosclerosis and coronary heart disease. Furthermore, recent studies have demonstrated that circSMARCA5 is associated with the occurrence and development of a variety of tumors, including gastric cancer, glioblastoma, hepatocellular carcinoma, multiple myeloma, colorectal cancer, breast cancer and osteosarcoma. Mechanistically, circSMARCA5 primarily acts as a sponge of miRNAs to regulate the expression of downstream genes, and can serve as a potential biomarker for the diagnosis of malignant tumors. This review summarizes the biological roles of circSMARCA5 and its molecular mechanism of action in various diseases. Moreover, the meta-analysis of some publications showed that the expression of circSMARCA5 was significantly correlated with the prognosis of patients and tumor TNM stage, showing that circSMARCA5 has the potential to be a prognostic marker.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gaozhen Huang
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shihao Li
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hong Xiong
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ruiqi Chen
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ling Zuo
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Ling Zuo, ; Hongwei Liu,
| | - Hongwei Liu
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Ling Zuo, ; Hongwei Liu,
| |
Collapse
|
12
|
Liu J, Wang J, Tian W, Xu Y, Li R, Zhao K, You C, Zhu Y, Bartsch JW, Niu H, Zhang H, Shu K, Lei T. PDCD10 promotes the aggressive behaviors of pituitary adenomas by up-regulating CXCR2 and activating downstream AKT/ERK signaling. Aging (Albany NY) 2022; 14:6066-6080. [PMID: 35963638 PMCID: PMC9417224 DOI: 10.18632/aging.204206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/27/2022] [Indexed: 12/05/2022]
Abstract
As the second most common primary intracranial neoplasms, about 40% of pituitary adenomas (PAs) exhibit aggressive behaviors and resulting in poor patient prognosis. The molecular mechanisms underlying the aggressive behaviors of PAs are not yet fully understood. Biochemical studies have reported that programmed cell death 10 (PDCD10) is a component of the striatin-interacting phosphatase and kinase (STRIPAK) complex and plays a dual role in cancers in a tissue- or disease-specific manner. In the present study, we report for the first time that the role of PDCD10 in PAs. Cell proliferation, migration and invasion were either enhanced by overexpressing or inhibited by silencing PDCD10 in PA cells. Moreover, PDCD10 significantly promoted epithelial–mesenchymal transition (EMT) of pituitary adenoma cells. Mechanistically, we showed that the expression of CXCR2, together with phosphorylation levels of AKT and ERK1/2 were regulated by PDCD10. Activation of CXCR2 inversed inactivation of AKT/ERK signal pathways and the tumor-suppressive effects induced by PDCD10 silencing. Finally, the pro-oncogenic effect of PDCD10 was confirmed by in vivo tumor grafting. Taken together, we demonstrate for the first time that PDCD10 can induce aggressive behaviors of PAs by promoting cellular proliferation, migration, invasion and EMT through CXCR2-AKT/ERK signaling axis.
Collapse
Affiliation(s)
- Jingdian Liu
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junwen Wang
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weidong Tian
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yu Xu
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Li
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao You
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zhu
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany
| | | | - Hongquan Niu
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Xu K, Fei W, Huo Z, Wang S, Li Y, Yang G, Hong Y. PDCD10 promotes proliferation, migration, and invasion of osteosarcoma by inhibiting apoptosis and activating EMT pathway. Cancer Med 2022; 12:1673-1684. [PMID: 35848121 PMCID: PMC9883585 DOI: 10.1002/cam4.5025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 06/11/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Osteosarcoma, a common primary malignant tumor, occurs in children and adolescents with a poor prognosis. The current treatment methods are various, while the five-year survival rate of patients has not been significantly improved. As a member of the programmed death factor (PDCD) family, programmed death factor 10 (PDCD10) plays a role in regulating cell apoptosis. Several studies of PDCD10 in CCM and cancers have been reported before. However, there are no relevant research reports on the effects of PDCD10 on osteosarcoma. METHODS We used bioinformatics analysis, IHC, and clinical data to confirm the expression of PDCD10 and its correlation with prognosis in osteosarcoma. Then, we used shRNAs and cDNA to knock down or overexpress PDCD10 in U2OS and MG63 cell lines. A series of function assays such as CCK8, Wound healing test, Plate cloning formation assay, and Transwell were done to confirm how PDCD10 affects osteosarcoma. Animal assays were done to confirm the conclusions in cell lines. At last, WB was used to measure the protein expression levels of apoptosis and the EMT pathway. RESULTS PDCD10 was highly expressed in patients with osteosarcoma and correlated with prognosis; PDCD10 knockdown inhibited osteosarcoma growth, proliferation, migration, and invasion; PDCD10 overexpression promoted osteosarcoma growth, proliferation, migration, and invasion. In vivo experiments confirmed the conclusions in cell lines; PDCD10 inhibited apoptosis and activated the EMT pathway. CONCLUSIONS In this study, it was found that PDCD10 was highly expressed in patients with osteosarcoma, and it was closely related to patient prognosis. PDCD10 inhibited tumor cell apoptosis and promoted tumor progression by activating the EMT pathway. These findings may provide a potential target for gene therapy of osteosarcoma.
Collapse
Affiliation(s)
- Ke Xu
- Department of Orthopedics, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina,Shanghai Clinical Research Center for Aging and MedicineShanghaiChina,Center of Community‐Based Health ResearchFudan UniversityShanghaiChina
| | - Wenchao Fei
- Department of Orthopedics, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina,Shanghai Clinical Research Center for Aging and MedicineShanghaiChina,Center of Community‐Based Health ResearchFudan UniversityShanghaiChina
| | - Ziqi Huo
- Department of Orthopedics, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina,Shanghai Clinical Research Center for Aging and MedicineShanghaiChina,Center of Community‐Based Health ResearchFudan UniversityShanghaiChina
| | - Shuoer Wang
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of Nuclear MedicineFudan University Shanghai Cancer CenterShanghaiChina,Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yinghua Li
- Shanghai Clinical Research Center for Aging and MedicineShanghaiChina,Center of Community‐Based Health ResearchFudan UniversityShanghaiChina,Central Laboratory, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina
| | - Gong Yang
- Central Laboratory, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina,Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Yang Hong
- Department of Orthopedics, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina,Shanghai Clinical Research Center for Aging and MedicineShanghaiChina,Center of Community‐Based Health ResearchFudan UniversityShanghaiChina
| |
Collapse
|
14
|
Chen Z, Fu S, Shan Y, Li H, Wang H, Liu J, Wang W, Huang Y, Huang H, Wang J, Ding M. Hsa_circ_0102485 inhibits the growth of cancer cells by regulating the miR-188-3p/ARID5B/AR axis in prostate carcinoma. Pathol Res Pract 2022; 237:154052. [DOI: 10.1016/j.prp.2022.154052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022]
|
15
|
The Emerging Roles of circSMARCA5 in Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3015818. [PMID: 35712125 PMCID: PMC9197613 DOI: 10.1155/2022/3015818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/18/2022] [Accepted: 05/21/2022] [Indexed: 12/09/2022]
Abstract
Circular RNAs have a unique covalent closed-loop structure, which is mainly formed by the reverse splicing of exons from a precursor mRNA. With the development of key technologies such as high-throughput sequencing and the advancement of bioinformatics in recent years, our understanding of circular RNAs has become increasingly more detailed, and their abnormal expression in a variety of cancers has attracted increasing attention. Studies have shown that circSNARCA5 not only plays a crucial role in the occurrence and development of cancer but may also serve as a reliable indicator for tumor screening or a good marker for evaluating cancer prognosis. Nevertheless, there are no reviews focusing on the relationship between circSMARCA5 and cancer. Therefore, we will first explain the main biological characteristics of circSMARCA5, such as biogenesis and biological effects. Then, the focus will be on its role and significance in cancer. Finally, we will summarize the known information on circSMARCA5 in cancer and discuss future research prospects.
Collapse
|
16
|
Yin X, Lin H, Lin L, Miao L, He J, Zhuo Z. LncRNAs and CircRNAs in cancer. MedComm (Beijing) 2022; 3:e141. [PMID: 35592755 PMCID: PMC9099016 DOI: 10.1002/mco2.141] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xin Yin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
- College of Pharmacy Jinan University Guangzhou Guangdong China
| | - Huiran Lin
- Faculty of Medicine Macau University of Science and Technology Macau China
| | - Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen China
| |
Collapse
|
17
|
Liu X, Tong Y, Xia D, Peng E, Yang X, Liu H, Ye T, Wang X, He Y, Ye Z, Chen Z, Tang K. Circular RNAs in prostate cancer: Biogenesis,biological functions, and clinical significance. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1130-1147. [PMID: 34820150 PMCID: PMC8585584 DOI: 10.1016/j.omtn.2021.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are covalently closed RNA molecules that play important regulatory roles in various tumors. Prostate cancer (PCa) is one of the most common malignant tumors in the world, with high morbidity and mortality. In recent years, more and more circRNAs have been found to be abnormally expressed and involved in the occurrence and development of PCa, including cell proliferation, apoptosis, invasion, migration, metastasis, chemotherapy resistance, and radiotherapy resistance. Most of the circRNAs regulate biological behaviors of cancer through a competitive endogenous RNA (ceRNA) regulatory mechanism, and some can exert their functions by binding to proteins. circRNAs are also associated with many clinicopathological features of PCa, including tumor grade, lymph node metastasis, and distant metastasis. In addition, circRNAs are potential diagnostic and prognostic biomarkers for PCa. Considering their critical regulatory roles in the progression of PCa, circRNAs would be the potential therapeutic targets. In this paper, the current research status of circRNAs in PCa is briefly reviewed.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hailang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinguang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
18
|
Sun B, Zhong FJ, Xu C, Li YM, Zhao YR, Cao MM, Yang LY. Programmed cell death 10 promotes metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma via PP2Ac-mediated YAP activation. Cell Death Dis 2021; 12:849. [PMID: 34521817 PMCID: PMC8440642 DOI: 10.1038/s41419-021-04139-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/17/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022]
Abstract
Tumour metastasis is the main cause of postoperative tumour recurrence and mortality in patients with hepatocellular carcinoma (HCC), but the underlying mechanism remains unclear. Accumulating evidence has demonstrated that programmed cell death 10 (PDCD10) plays an important role in many biological processes. However, the role of PDCD10 in HCC progression is still elusive. In this study, we aimed to explore the clinical significance and molecular function of PDCD10 in HCC. PDCD10 is significantly upregulated in HCC, which also correlates with aggressive clinicopathological characteristics and predicts poor prognosis of HCC patients after liver resection. High PDCD10 expression promotes HCC cell proliferation, migration, and invasion in vitro and tumour growth, metastasis in vivo. In addition, PDCD10 could facilitate epithelial-to-mesenchymal transition (EMT) of HCC cells. In terms of the mechanism, PDCD10 directly binds to the catalytic subunit of protein phosphatase 2A (PP2Ac) and increases its enzymatic activity, leading to the interaction of YAP and dephosphorylation of the YAP protein. This interaction contributes to YAP nuclear translocation and transcriptional activation. PP2Ac is necessary for PDCD10-mediated HCC progression. Knocking down PP2Ac abolished the tumour-promoting role of PDCD10 in the migration, invasion and EMT of HCC. Moreover, a PP2Ac inhibitor (LB100) could restrict tumour growth and metastasis of HCC with high PDCD10 expression. Collectively, PDCD10 promotes EMT and the progression of HCC by interacting with PP2Ac to promote YAP activation, which provides new insight into the mechanism of cancer metastasis. PDCD10 may be a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Bo Sun
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fang-Jing Zhong
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cong Xu
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yi-Ming Li
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yan-Rong Zhao
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mo-Mo Cao
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lian-Yue Yang
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
19
|
A circular RNA, circSMARCA5, inhibits prostate cancer proliferative, migrative, and invasive capabilities via the miR-181b-5p/miR-17-3p-TIMP3 axis. Aging (Albany NY) 2021; 13:19908-19919. [PMID: 34390329 PMCID: PMC8386534 DOI: 10.18632/aging.203408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
SMARCA5 (circSMARCA5) is involved in the occurrence of different cancers, but its role in prostate cancer carcinogenesis and metastatic transformation remains elusive. Thus, we evaluated the circSMARCA5 functional relevance in prostate cancer and its associated molecular mechanism. First, circSMARCA5 expression and function in this cancer were evaluated. To determine the miR-181b-5p/miR-17-3p target and clarify how circSMARCA5 regulates the miR-181b-5p-TIMP3 and miR-17-3p-TIMP3 axis, RNA immunoprecipitation, biotin-coupled microRNA capture, luciferase reporter, Western blot, and quantitative real-time PCR assays were employed. In primary and metastatic prostate cancer tissues, circSMARCA5 was significantly downregulated compared with normal controls. Functionally, circSMARCA5 exhibited a suppressive effect on prostate cancer cells' metastasis and growth. At the molecular level, circSMARCA5 could affect the tissue inhibitor of metalloproteinases 3 (TIMP3) expression through miR-181b-5p or miR-17-3p interactions. Moreover, lysine acetyltransferase 5 (KAT5) induced circSMARCA5 biogenesis and regulated the miR-181b-5p-TIMP3 and miR-17-3p-TIMP3 axis. These results suggested that targeting circSMARCA5-miR-181b-5p-TIMP3 and circSMARCA5-miR-17-3p-TIMP3 axis might be a novel therapeutic strategy for prostate cancer.
Collapse
|
20
|
Chao F, Wang S, Zhang C, Han D, Xu G, Chen G. The Emerging Role of Circular RNAs in Prostate Cancer: A Systematic Review. Front Cell Dev Biol 2021; 9:681163. [PMID: 34386491 PMCID: PMC8353182 DOI: 10.3389/fcell.2021.681163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer is one of the most common malignant tumors that threaten the health of men. It is urgent to explore new molecular targets and develop new drugs for the treatment of prostate cancer. Circular RNAs (circRNAs) are aberrantly expressed in various malignant tumors. The dysregulated circRNAs are involved in the metastasis, tumor growth, drug resistance, and immunosuppression of malignant tumors. The present review systematically summarized publications concerning the biological implications of circRNAs in prostate cancer. The PubMed and Web of Science databases were used to retrieve publications concerning circRNAs and prostate cancer until June 16, 2021. The following keywords were used in the literature search: (circRNA OR circular RNA) AND prostate cancer. 73 publications were enrolled in the present systematic review to summarize the role of circRNAs in prostate cancer. The dysregulated and functional circRNAs were involved in the cell cycle, proliferation, migration, invasion, metastasis, drug resistance and radiosensitivity of prostate cancer. In addition, circRNAs could function through EVs and serve as prognostic and diagnostic biomarkers. Certain circRNAs were correlated with clinicopathological features of prostate cancer. A comprehensive review of the molecular mechanism of the tumorigenesis and progression of prostate cancer may contribute to the development of new therapies of prostate cancer in the future.
Collapse
Affiliation(s)
- Fan Chao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shiyu Wang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Cong Zhang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Dunsheng Han
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Ji X, Sun W, Lv C, Huang J, Zhang H. Circular RNAs Regulate Glucose Metabolism in Cancer Cells. Onco Targets Ther 2021; 14:4005-4021. [PMID: 34239306 PMCID: PMC8259938 DOI: 10.2147/ott.s316597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) were originally thought to result from RNA splicing errors. However, it has been shown that circRNAs can regulate cancer onset and progression in various ways. They can regulate cancer cell proliferation, differentiation, invasion, and metastasis. Moreover, they modulate glucose metabolism in cancer cells through different mechanisms such as directly regulating glycolytic enzymes and glucose transporter (GLUT) or indirectly regulating signal transduction pathways. In this review, we elucidate on the role of circRNAs in regulating glucose metabolism in cancer cells, which partly explains the pathogenesis of malignant tumors, and provides new therapeutic targets or new diagnostic and prognostic markers for human cancers.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Chengzhou Lv
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Jiapeng Huang
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| |
Collapse
|
22
|
Zhang C, Yang Q, Li W, Kang Y, Zhou F, Chang D. Roles of circRNAs in prostate cancer: Expression, mechanism, application and potential. Int J Biochem Cell Biol 2021; 134:105968. [PMID: 33731309 DOI: 10.1016/j.biocel.2021.105968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 12/17/2022]
Abstract
Circular RNA (circRNA) is a member of the non-coding RNA family that is formed by trans-splicing. Because of its unique structure and characteristics, it has extraordinary value for the diagnosis, treatment, and prognosis of diseases, particularly for tumors. Study of the role of circRNAs in the occurrence and development of prostate cancer has made considerable progress, but many areas remain that require further exploration and improvement. This article describes research into sequencing expression profiles, expression regulation, potential value as biomarkers, mechanism in the occurrence and development, therapy resistance, relationship with clinicopathological features, and prognostic value of circRNAs in prostate cancer from the past few years.
Collapse
Affiliation(s)
- Chunlei Zhang
- Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730050, China
| | - Qi Yang
- Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730050, China
| | - Weiping Li
- Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730050, China
| | - Yindong Kang
- Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730050, China
| | - Fenghai Zhou
- Department of Urology, Gansu Provincial People's Hospital, Lanzhou, 730050, China
| | - Dehui Chang
- Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730050, China.
| |
Collapse
|
23
|
Zhang Z, Sang Y, Liu Z, Shao J. Negative Correlation Between Circular RNA SMARC5 and MicroRNA 432, and Their Clinical Implications in Bladder Cancer Patients. Technol Cancer Res Treat 2021; 20:15330338211039110. [PMID: 34482767 PMCID: PMC8422811 DOI: 10.1177/15330338211039110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/23/2021] [Indexed: 01/22/2023] Open
Abstract
Objective: Our study aimed to evaluate the correlation of circular RNA SMARCA5 (circ-SMARCA5) and microRNA 432 (miR-432) with clinical characteristics and survival in bladder cancer patients. Methods: Preoperative clinicopathologic features and survival data of 156 bladder cancer patients were retrospectively reviewed. A total of 156 cases of tumor tissues, whereas 71 cases out of 156 available adjacent tissues were obtained from the Pathology Department for circ-SMARCA5 and miR-432 detections using real-time quantitative polymerase chain reaction. Results: Circ-SMARCA5 was upregulated but miR-432 was downregulated in tumor tissues compared with adjacent tissues; meanwhile, circ-SMARCA5 expression was negatively correlated with miR-432 in bladder cancer tissues. Circ-SMARCA5 high expression was correlated with larger tumor size, higher tumor stage, and lymph node (LYN) metastasis. However, miR-432 high expression was correlated with single multiplicity, smaller tumor size, lower tumor stage, less LYN metastasis in bladder cancer patients. Regarding survival, circ-SMARCA5 high expression was correlated with shorter disease-free survival (DFS) and overall survival (OS); whereas, miR-432 high expression was correlated with longer DFS and OS in bladder cancer patients. Further multivariate Cox's regression analysis displayed that circ-SMARCA5 high expression was an independent predictive factor for both worse DFS and OS in bladder cancer patients. Conclusion: Circ-SMARCA5 high expression but miR-432 low expression is correlated with advanced tumor features and poor survival of bladder cancer patients, which present as potential prognostic markers in bladder cancer.
Collapse
Affiliation(s)
- Zhijia Zhang
- Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Yanxia Sang
- Sixth Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhengan Liu
- Sixth Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinkai Shao
- Shanxi Provincial People’s Hospital, Taiyuan, China
| |
Collapse
|
24
|
Shi Y, He R, Yang Y, He Y, Shao K, Zhan L, Wei B. Circular RNAs: Novel biomarkers for cervical, ovarian and endometrial cancer (Review). Oncol Rep 2020; 44:1787-1798. [PMID: 33000238 PMCID: PMC7551080 DOI: 10.3892/or.2020.7780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Cervical, ovarian and endometrial cancer are the three most common types of malignant tumor and the leading causes of cancer‑associated death in women. Tumor debulking surgery followed by platinum and paclitaxel chemotherapy is the current treatment regime of choice. However, as a result of late diagnosis and chemoresistance, the survival rates of patients with advanced gynecological cancers remains unsatisfactory. Circular RNAs (circRNAs) are stable noncoding RNAs that are present in a wide variety of tissue and cell types. With the enhancement of RNA sequencing methods, increasing numbers of circRNAs have been identified, and their functions are gradually being revealed. In recent years, circRNAs have received increasing attention for their regulatory roles in cervical, ovarian and endometrial cancer. The aim of the present review was to summarize the possible mechanisms of recently identified circRNAs; we hypothesize that a novel diagnostic and therapeutic biomarker may be identified to prolong the survival time of patients with gynecological malignancies.
Collapse
Affiliation(s)
- Yuchuan Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Runhua He
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yu Yang
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yu He
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Kang Shao
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Lei Zhan
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Bing Wei
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
25
|
Rochow H, Jung M, Weickmann S, Ralla B, Stephan C, Elezkurtaj S, Kilic E, Zhao Z, Jung K, Fendler A, Franz A. Circular RNAs and Their Linear Transcripts as Diagnostic and Prognostic Tissue Biomarkers in Prostate Cancer after Prostatectomy in Combination with Clinicopathological Factors. Int J Mol Sci 2020; 21:ijms21217812. [PMID: 33105568 PMCID: PMC7672590 DOI: 10.3390/ijms21217812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
As new biomarkers, circular RNAs (circRNAs) have been largely unexplored in prostate cancer (PCa). Using an integrative approach, we aimed to evaluate the potential of circRNAs and their linear transcripts (linRNAs) to act as (i) diagnostic biomarkers for differentiation between normal and tumor tissue and (ii) prognostic biomarkers for the prediction of biochemical recurrence (BCR) after radical prostatectomy. In a first step, eight circRNAs (circATXN10, circCRIM1, circCSNK1G3, circGUCY1A2, circLPP, circNEAT1, circRHOBTB3, and circSTIL) were identified as differentially expressed via a genome-wide circRNA-based microarray analysis of six PCa samples. Additional bioinformatics and literature data were applied for this selection process. In total, 115 malignant PCa and 79 adjacent normal tissue samples were examined using robust RT-qPCR assays specifically established for the circRNAs and their linear counterparts. Their diagnostic and prognostic potential was evaluated using receiver operating characteristic curves, Cox regressions, decision curve analyses, and C-statistic calculations of prognostic indices. The combination of circATXN10 and linSTIL showed a high discriminative ability between malignant and adjacent normal tissue PCa. The combination of linGUCY1A2, linNEAT1, and linSTIL proved to be the best predictive RNA-signature for BCR. The combination of this RNA signature with five established reference models based on only clinicopathological factors resulted in an improved predictive accuracy for BCR in these models. This is an encouraging study for PCa to evaluate circRNAs and their linRNAs in an integrative approach, and the results showed their clinical potential in combination with standard clinicopathological variables.
Collapse
Affiliation(s)
- Hannah Rochow
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
- Berlin Institute for Urologic Research, 10115 Berlin, Germany
| | - Monika Jung
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
| | - Sabine Weickmann
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
| | - Bernhard Ralla
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
| | - Carsten Stephan
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
- Berlin Institute for Urologic Research, 10115 Berlin, Germany
| | - Sefer Elezkurtaj
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (S.E.); (E.K.)
| | - Ergin Kilic
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (S.E.); (E.K.)
- Institute of Pathology, Hospital Leverkusen, 51375 Leverkusen, Germany
| | - Zhongwei Zhao
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Klaus Jung
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
- Berlin Institute for Urologic Research, 10115 Berlin, Germany
- Correspondence: ; Tel.: +49-450-515041
| | - Annika Fendler
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
- Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Cancer Research Program, 13125 Berlin, Germany
- Cancer Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antonia Franz
- Department of Urology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (H.R.); (M.J.); (S.W.); (B.R.); (C.S.); (Z.Z.); (A.F.); (A.F.)
| |
Collapse
|