1
|
Qiu X, Huang Y, Jin L, Yang C, Wang J. Roles of AFAP1-AS1 in Gynecology and Urogenital System. Curr Pharm Des 2024; 30:639-647. [PMID: 38347771 DOI: 10.2174/0113816128286229240129090915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Human disease onset and progression are strongly associated with aberrant long noncoding RNA (lncRNA) expression, highlighting the functional regulatory role of lncRNA. Actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1), a member of lncRNAs, is located on the antisense strand of Actin filament-associated protein 1 (AFAP1). METHODS We conducted a comprehensive review of AFAP1-AS1's functions in gynecology and urogenital systems using the "PubMed" database. RESULTS Our analysis reveals that AFAP1-AS1 is overexpressed and engages in the initiation and process of gynecological and urogenital diseases. The regulatory mechanisms employed by AFAP1-AS1 involve four major strategies: gene-level effects, competition for microRNA (miRNA) repression, protein binding, participation in signaling networks that influence cellular processes such as proliferative phenotype, migration, invasiveness, epithelial-mesenchymal transition (EMT), cycle regulation, drug resistance, and more. Furthermore, AFAP1-AS1 is implicated in guiding clinicopathological characteristics. CONCLUSION AFAP1-AS1 holds promise as a potent diagnostics and treatment option for gynecological and genitourinary systems in the future.
Collapse
Affiliation(s)
- Xinyan Qiu
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yulin Huang
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lin Jin
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Canying Yang
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jiwei Wang
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
2
|
Farheen J, Hosmane NS, Zhao R, Zhao Q, Iqbal MZ, Kong X. Nanomaterial-assisted CRISPR gene-engineering - A hallmark for triple-negative breast cancer therapeutics advancement. Mater Today Bio 2022; 16:100450. [PMID: 36267139 PMCID: PMC9576993 DOI: 10.1016/j.mtbio.2022.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most violent class of tumor and accounts for 20-24% of total breast carcinoma, in which frequently rare mutation occurs in high frequency. The poor prognosis, recurrence, and metastasis in the brain, heart, liver and lungs decline the lifespan of patients by about 21 months, emphasizing the need for advanced treatment. Recently, the adaptive immunity mechanism of archaea and bacteria, called clustered regularly interspaced short palindromic repeats (CRISPR) combined with nanotechnology, has been utilized as a potent gene manipulating tool with an extensive clinical application in cancer genomics due to its easeful usage and cost-effectiveness. However, CRISPR/Cas are arguably the efficient technology that can be made efficient via organic material-assisted approaches. Despite the efficacy of the CRISPR/Cas@nano complex, problems regarding successful delivery, biodegradability, and toxicity remain to render its medical implications. Therefore, this review is different in focus from past reviews by (i) detailing all possible genetic mechanisms of TNBC occurrence; (ii) available treatments and gene therapies for TNBC; (iii) overview of the delivery system and utilization of CRISPR-nano complex in TNBC, and (iv) recent advances and related toxicity of CRISPR-nano complex towards clinical trials for TNBC.
Collapse
Affiliation(s)
- Jabeen Farheen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Narayan S. Hosmane
- Department of Chemistry & Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Qingwei Zhao
- Research Center for Clinical Pharmacy & Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - M. Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
- Zhejiang-Mauritius Joint Research Centre for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| |
Collapse
|
3
|
Non-coding RNAs associated with autophagy and their regulatory role in cancer therapeutics. Mol Biol Rep 2022; 49:7025-7037. [PMID: 35534587 DOI: 10.1007/s11033-022-07517-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Cancer widely affects the world's health population and ranks second leading cause of death globally. Because of poor prognosis of various types of cancer such as sarcoma, lymphoma, adenomas etc., their high recurrence and metastasis rate and low early diagnosis rate have become concern lately. Role of autophagy in cancer progression is being studied since long. Autophagy is cell's self-degradative mechanism towards stress and has role in degradation of the cytoplasmic macromolecules which has potential to damage other cytosolic molecules. Autophagy can promote as well as inhibit tumorigenesis depending upon the associated protein combinations in cancer cells. Recent studies have shown that non-coding RNAs (ncRNAs) do not code for protein but play essential role in modulation of gene expression. At transcriptional level, different ncRNAs like lncRNAs, miRNAs and circRNAs directly or indirectly affect different stages of autophagy like autophagy-dependent and non-apoptotic cell death in cancer cells. This review focuses on the involvement of ncRNAs in autophagy and the modulation of several cancer signal transduction pathways in cancers such as lung, breast, prostate, pancreatic, thyroid, and kidney cancer.
Collapse
|
4
|
Kong D, Shen D, Liu Z, Zhang J, Zhang J, Geng C. Circ_0008500 Knockdown Improves Radiosensitivity and Inhibits Tumorigenesis in Breast Cancer Through the miR-758-3p/PFN2 Axis. J Mammary Gland Biol Neoplasia 2022; 27:37-52. [PMID: 35239064 DOI: 10.1007/s10911-022-09514-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/07/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most common malignancies worldwide. Circular RNAs (CircRNAs) were revealed to be implicated in the development of breast cancer. In this research, we aimed to investigate the role and underlying mechanism of circ_0008500 in the development and radiosensitivity of breast cancer. Using real-time quantitative PCR (RT-qPCR) and western blot, we found that hsa_circ_0008500 (circ_0008500) and profilin 2 (PFN2) were increased, while microRNA-758-3p (miR-758-3p) was decreased in breast cancer tissues and cells. Cell viability, the number of colonies, proliferation and apoptosis were detected using CCK-8, colony formation, EdU assays and flow cytometry, respectively. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were devoted to test the interaction between miR-758-3p and circ_0008500 or PFN2. The results showed that circ_0008500 knockdown inhibited cell growth, and facilitated cell apoptosis and radiosensitivity in breast cancer cells in vitro. Moreover, circ_0008500 regulated PFN2 expression by sponging miR-758-3p. Functionally, circ_0008500 knockdown regulated cell behaviors and radiosensitivity by targeting miR-758-3p to downregulate PFN2 expression in vitro. Additionally, in vivo tumor formation assay and immunohistochemistry (IHC) assay demonstrated that circ_0008500 knockdown enhanced the radiosensitivity and repressed tumor growth in vivo. In conclusion, circ_0008500 inhibition promoted the radiosensitivity and restrained the development of breast cancer by downregulating PFN2 expression via targeting miR-758-3p.
Collapse
Affiliation(s)
- Deyou Kong
- Department of Radiotherapy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Dongxing Shen
- Department of Radiotherapy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Zhikun Liu
- Department of Radiotherapy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Jun Zhang
- Department of Radiotherapy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Jian Zhang
- Department of Radiotherapy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Cuizhi Geng
- Breast Center, the Fourth Hospital of Hebei Medical University, Yuhua District, No. 169 Tianshan Street, Shijiazhuang, 050035, China.
| |
Collapse
|
5
|
JMJD2C-mediated long non-coding RNA MALAT1/microRNA-503-5p/SEPT2 axis worsens non-small cell lung cancer. Cell Death Dis 2022; 13:65. [PMID: 35046387 PMCID: PMC8770565 DOI: 10.1038/s41419-022-04513-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 12/25/2022]
Abstract
Jumonji domain containing protein 2C (JMJD2C) could epigenetically regulate cancer cells. We specifically explored the downstream mechanism of JMJD2C in non-small cell lung cancer (NSCLC) from the long non-coding RNA metastasis associated with lung adenocarcinoma transcript 1/microRNA-503-5p/septin 2 (MALAT1/miR-503-5p/SEPT2) axis. NSCLC clinical tissues were utilized to assess JMJD2C, MALAT1, miR-503-5p and SEPT2 levels. NSCLC cell lines (A549 and H1299) were applied for loss-of-function and gain-of-function tests to identify the functional roles of JMJD2C, MALAT1, miR-503-5p, and SEPT2. The interactions among JMJD2C, MALAT1, miR-503-5p, and SEPT2 were assessed. Augmented JMJD2C, MALAT1, and SEPT2 and reduced miR-503-5p levels were found in NSCLC. Depleting JMJD2C or MALAT1, or restoring miR-503-5p exerted anti-tumor effects on NSCLC cells in vitro and in vivo. JMJD2C is bound to the promoter of MALAT1. MALAT1 bound to miR-503-5p and miR-503-5p targeted SEPT2. Knocking down MALAT1 or SEPT2, or elevating miR-503-5p mitigated the pro-tumor effects of upregulated JMJD2C on NSCLC. It is evident that the JMJD2C-mediated MALAT1/miR-503-5p/SEPT2 axis takes part in the process of NSCLC and even worsens NSCLC.
Collapse
|
6
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Mokhtari M. A Review on the Role of AFAP1-AS1 in the Pathoetiology of Cancer. Front Oncol 2021; 11:777849. [PMID: 34912717 PMCID: PMC8666534 DOI: 10.3389/fonc.2021.777849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
AFAP1-AS1 is a long non-coding RNA which partakes in the pathoetiology of several cancers. The sense protein coding gene from this locus partakes in the regulation of cytophagy, cell motility, invasive characteristics of cells and metastatic ability. In addition to acting in concert with AFAP1, AFAP1-AS1 can sequester a number of cancer-related miRNAs, thus affecting activity of signaling pathways involved in cancer progression. Most of animal studies have confirmed that AFAP1-AS1 silencing can reduce tumor volume and invasive behavior of tumor cells in the xenograft models. Moreover, statistical analyses in the human subjects have shown strong correlation between expression levels of this lncRNA and clinical outcomes. In the present work, we review the impact of AFAP1-AS1 in the carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayybeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Majid Mokhtari
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Zhou Z, Yang P, Zhang B, Yao M, Jia Y, Li N, Liu H, Bai H, Gong X. Long Noncoding RNA TTC39A-AS1 Promotes Breast Cancer Tumorigenicity by Sponging MicroRNA-483-3p and Thereby Upregulating MTA2. Pharmacology 2021; 106:573-587. [PMID: 34488224 DOI: 10.1159/000515909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/16/2021] [Indexed: 12/09/2022]
Abstract
INTRODUCTION In recent years, the regulatory activities of long noncoding RNAs have received increasing attention as an important research focus. This study aimed to characterize the expression and detailed roles of TTC39A antisense RNA 1 (TTC39A-AS1) in breast cancer (BC), in addition to concentrating on its downstream mechanisms. METHODS Quantitative RT-PCR was performed to determine the expression levels of TTC39A-AS1, microRNA-483-3p (miR-483-3p), and metastasis-associated gene 2 (MTA2). Further, the detailed functions of TTC39A-AS1 in BC cells were confirmed using the Cell Counting Kit 8 assay, flow cytometric analysis, and Transwell cell migration and invasion assays. The targeting relationship between TTC39A-AS1, miR-483-3p, and MTA2 in BC was predicted via bioinformatics analysis and further confirmed by performing the luciferase reporter assay and RNA immunoprecipitation. RESULTS TTC39A-AS1 was present in high levels in BC; this result was confirmed in our sample cohort and The Cancer Genome Atlas database. Patients with BC with a high level of TTC39A-AS1 had a shorter overall survival than those with a low level of TTC39A-AS1. Functionally, the absence of TTC39A-AS1 accelerated cell apo-ptosis but retained cell proliferation, migration, and invasion. Mechanistically, TTC39A-AS1 functioned as a competing endogenous RNA in BC by sponging miR-483-3p and thereby indirectly increasing MTA2 expression. Finally, rescue experiments revealed that the tumor-inhibiting actions of TTC39A-AS1 knockdown on the malignant characteristics of BC cells could be reversed by inhibiting miR-483-3p or upregulating MTA2. CONCLUSION The newly identified TTC39A-AS1/miR-483-3p/MTA2 pathway was revealed to be a critical regulator in the tumorigenicity of BC, possibly offering a novel therapeutic direction for the anticancer treatment of BC.
Collapse
Affiliation(s)
- Zhaohui Zhou
- Department of Breast and Thyroid, Tianshui Second Hospital, TianShui, China
| | - Ping Yang
- Department of Breast, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Binming Zhang
- Department of Breast, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Maohui Yao
- Department of Breast and Thyroid, Tianshui Second Hospital, TianShui, China
| | - Yali Jia
- Department of Breast and Thyroid, Tianshui Second Hospital, TianShui, China
| | - Na Li
- Department of Breast and Thyroid, Tianshui Second Hospital, TianShui, China
| | - Huimin Liu
- Department of Breast, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Haiya Bai
- Department of Breast, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Xiaojun Gong
- Department of Breast, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| |
Collapse
|
8
|
Lu C, Wei D, Zhang Y, Wang P, Zhang W. Long Non-Coding RNAs as Potential Diagnostic and Prognostic Biomarkers in Breast Cancer: Progress and Prospects. Front Oncol 2021; 11:710538. [PMID: 34527584 PMCID: PMC8436618 DOI: 10.3389/fonc.2021.710538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Breast cancer is the most common malignancy among women worldwide, excluding non-melanoma skin cancer. It is now well understood that breast cancer is a heterogeneous entity that exhibits distinctive histological and biological features, treatment responses and prognostic patterns. Therefore, the identification of novel ideal diagnostic and prognostic biomarkers is of utmost importance. Long non-coding RNAs (lncRNAs) are commonly defined as transcripts longer than 200 nucleotides that lack coding potential. Extensive research has shown that lncRNAs are involved in multiple human cancers, including breast cancer. LncRNAs with dysregulated expression can act as oncogenes or tumor-suppressor genes to regulate malignant transformation processes, such as proliferation, invasion, migration and drug resistance. Intriguingly, the expression profiles of lncRNAs tend to be highly cell-type-specific, tissue-specific, disease-specific or developmental stage-specific, which makes them suitable biomarkers for breast cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Cuicui Lu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Duncan Wei
- Department of Pharmacy, The First Affiliated Hospital of Medical College of Shantou University, Shantou, China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Wang
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Wen Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
9
|
Zhang X, Li F, Zhou Y, Mao F, Lin Y, Shen S, Li Y, Zhang S, Sun Q. Long noncoding RNA AFAP1-AS1 promotes tumor progression and invasion by regulating the miR-2110/Sp1 axis in triple-negative breast cancer. Cell Death Dis 2021; 12:627. [PMID: 34145213 PMCID: PMC8213778 DOI: 10.1038/s41419-021-03917-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022]
Abstract
Long noncoding ribonucleic acids (LncRNAs) have been found to be involved in the proliferation, apoptosis, invasion, migration, and other pathological processes of triple-negative breast cancer (TNBC). Expression of the lncRNA actin filament-associated protein 1 antisense RNA1 (AFAP1-AS1) has been found to be significantly higher in TNBC than in other subtypes or in normal tissue samples, but the specific mechanism by which AFAP1-AS1 affects the occurrence and development of TNBC is yet to be revealed. In this study, we used Cell Counting Kit-8 (CCK-8), colony formation, wound healing migration, Transwell invasion, and nude mouse xenograft assays to confirm the role of AFAP1-AS1 in the proliferation, migration of TNBC cells in vitro and in vivo. In addition, we performed bioinformatics analyses, reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), western blot (WB), and dual-luciferase reporter assays (dual-LRA) to confirm interaction among AFAP1-AS1, micro-RNA 2110 (miR-2110), and Sp1 transcription factor (Sp1). We found that silencing AFAP1-AS1 and Sp1 or upregulating miR-2110 suppressed the proliferation, migration, and invasion of MDA-MB-231 and MDA-MB-468 cells in vitro as well as tumor growth in vivo. Mechanistically, the dual-LRA highlighted that miR-2110 was an inhibitory target of AFAP1-AS1, and that AFAP1-AS1 functioned as a miR-2110 sponge to increase Sp1 expression. AFAP1-AS1 silencing led to a reduction in Sp1 mRNA and protein levels, which could be reversed by joint transfection with miR-2110 inhibitor. Our findings demonstrated that AFAP1-AS1 could modulate the progression of breast cancer cells and affect tumorigenesis in mice by acting as a miR-2110 sponge, resulting in regulation of Sp1 expression. Therefore, AFAP1-AS1 could play a pivotal role in the treatment of TNBC.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Fangyuan Li
- Medical Science Research Centre, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Feng Mao
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yan Lin
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Songjie Shen
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yuntao Li
- No.1 department of surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sheng Zhang
- 3rd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China.
| |
Collapse
|
10
|
Ma Q, Dai X, Lu W, Qu X, Liu N, Zhu C. Silencing long non-coding RNA MEG8 inhibits the proliferation and induces the ferroptosis of hemangioma endothelial cells by regulating miR-497-5p/NOTCH2 axis. Biochem Biophys Res Commun 2021; 556:72-78. [PMID: 33839417 DOI: 10.1016/j.bbrc.2021.03.132] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Even though long non-coding RNA (lncRNA) MEG8 plays vital roles in carcinogenesis of malignances, its roles and mechanisms in hemangioma remain unknown. Therefore, we evaluate the oncogenic roles of MEG8 in hemangioma. Small interfering RNA (siRNA)-mediated depletion of MEG8 inhibited the proliferation and increased MDA level in human hemangioma endothelial cells (HemECs). The inhibitors of ferroptosis (ferrostatin-1 and liproxstatin-1) abolished the MEG8 silence induced cell viability loss. Knockdown of MEG8 increased the miR-497-5p expression and reduced the mRNA and protein levels of NOTCH2. Using a dual-luciferase assay, we confirmed the binding between MEG8 and miR-497-5p, and between the miR-497-5p and 3'UTR of NOTCH2. We further found that silencing MEG8 significantly decreased the expressions of SLC7A11 and GPX4 both in mRNA and protein level and had no effect on the level of AIFM2. Importantly, blocking miR-497-5p abrogated the effects of MEG8 loss on cell viability, MDA level and expression levels of NOTCH2, SLC7A11 and GPX4 in HemECs. Taken together, our results suggested that knockdown of long non-coding RNA MEG8 inhibited the proliferation and induced the ferroptosis of hemangioma endothelial cells by regulating miR-497-5p/NOTCH2 axis.
Collapse
Affiliation(s)
- Qingjie Ma
- The First People's Hospital of Yunnan Province, Kunming, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Xiaolin Dai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Weiwei Lu
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaowen Qu
- The First People's Hospital of Yunnan Province, Kunming, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Na Liu
- The First People's Hospital of Yunnan Province, Kunming, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| | - Chongtao Zhu
- The First People's Hospital of Yunnan Province, Kunming, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| |
Collapse
|