1
|
Singh SB, Shrestha BB, Gandhi OH, Shah RP, Mukhtiar V, Ayubcha C, Desai V, Eberts CE, Paudyal P, Jha G, Singh A, Shi Y, Kumar T. The comparative utility of FAPI-based PET radiotracers over [ 18F]FDG in the assessment of malignancies. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:190-207. [PMID: 39309420 PMCID: PMC11411191 DOI: 10.62347/jxzi9315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/28/2024] [Indexed: 09/25/2024]
Abstract
Fibroblast activation protein (FAP) is a type II transmembrane serine protease overexpressed in cancer-associated fibroblasts (CAFs) and has been associated with poor prognosis. PET/CT imaging with radiolabeled FAP inhibitors (FAPI) is currently being studied for various malignancies. This review identifies the uses and limitations of FAPI PET/CT in malignancies and compares the advantages and disadvantages of FAPI and 18F-fluorodeoxyglucose ([18F]FDG). Due to high uptake, rapid clearance from the circulation, and limited uptake in normal tissue, FAPI tumor-to-background contrast ratios are equivalent to or better than [18F]FDG in most applications. In several settings, FAPI has shown greater uptake specificity than [18F]FDG and improved sensitivity in detecting lymph node, bone, and visceral tissue metastases. Therefore, FAPI PET/CT may be complementary in distinguishing pathological lesions with conventional imaging, determining the primary site of malignancy, improving tumor staging, and detecting disease recurrence, especially in patients with inconclusive [18F]FDG PET/CT findings. Nevertheless, FAPI has limitations, including certain settings with non-specific uptake, modified uptake with age and menopause status, challenges with clinical access, and limited clinical evidence.
Collapse
Affiliation(s)
- Shashi B Singh
- Stanford University School of MedicineStanford, CA 94305, USA
| | | | - Om H Gandhi
- Hospital of The University of Pennsylvania3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Rajendra P Shah
- Department of Cardiology, HCA Houston HealthcareHouston, TX 77004, USA
| | | | - Cyrus Ayubcha
- Harvard Medical School25 Shattuck Street, Boston, MA 02115, USA
| | - Vineet Desai
- Harvard Medical School25 Shattuck Street, Boston, MA 02115, USA
| | - Christine E Eberts
- University of California, San Diego School of Medicine9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Pranita Paudyal
- Bridgeport Hospital267 Grant Street, Bridgeport, CT 06610, USA
| | - Goody Jha
- University of California Davis Medical Center4301 X Street, Sacramento, CA 95817, USA
| | - Anurag Singh
- Trijuddha Mahavir Prasad Raghuvir Ram Madhyamik VidyalayaBirgunj, Parsa 44300, Nepal
| | - Yangyang Shi
- University of Arizona College of Medicine1501 N Campbell Avenue, Tucson, AZ 85724, USA
| | - Tushar Kumar
- University of Washington Medical Center, Main Hospital1959 NE Pacific Street, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Lee H, Lee D, Kim S, Koo Y, Chae Y, Yun T, Yang MP, Kim S, Kang BT, Kim H. Case report: Evaluation of hindlimb ischemia using 18F-fluorodeoxyglucose positron emission tomography in a cat with cardiogenic arterial thromboembolism. Front Vet Sci 2023; 10:1223866. [PMID: 37745211 PMCID: PMC10511747 DOI: 10.3389/fvets.2023.1223866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
A 12-year-old castrated male domestic shorthair cat weighing 6.7 kg presented with acute hindlimb paralysis and tachypnea. The femoral pulse was absent bilaterally. Thoracic radiography showed finding compatible with cardiogenic pulmonary edema. Echocardiography revealed hypertrophic cardiomyopathy phenotype and a spontaneous echocardiographic contrast in the left atrium, suggesting cardiogenic arterial thromboembolism. Oxygen supplementation, diuretics, and antithrombotic and thrombolytic agents were also administered. However, hindlimb motor function was not restored. Severely increased aspartate aminotransferase and creatinine phosphokinase, as well as neutropenia with a degenerative left shift were identified, and amputation was considered to prevent sepsis caused by necrosis of the ischemic tissues. 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography was performed to evaluate the metabolic activity of the muscle tissues and determine the level of amputation. There was no 18F-FDG uptake in the extremities of either the hind limbs or the caudal parts of the bilateral femoral muscle mass, suggesting a loss of metabolic activity in the area. Considering the wide affected area, a decreased quality of life was predicted postoperatively, and the cat was euthanized at the owner's request. Postmortem muscle biopsy confirmed weak atrophy of the left femoral muscle and prominent atrophy of the right calf. This case report describes the use of 18F-FDG PET in a cat with ischemia caused by cardiogenic arterial thromboembolism.
Collapse
Affiliation(s)
- Hyeongyeong Lee
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Dohee Lee
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Sanggu Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Yoonhoi Koo
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Yeon Chae
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Taesik Yun
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Mhan-Pyo Yang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Byeong-Teck Kang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Hakhyun Kim
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
3
|
Wang J, Jin C, Zhou J, Zhou R, Tian M, Lee HJ, Zhang H. PET molecular imaging for pathophysiological visualization in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2023; 50:765-783. [PMID: 36372804 PMCID: PMC9852140 DOI: 10.1007/s00259-022-05999-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia worldwide. The exact etiology of AD is unclear as yet, and no effective treatments are currently available, making AD a tremendous burden posed on the whole society. As AD is a multifaceted and heterogeneous disease, and most biomarkers are dynamic in the course of AD, a range of biomarkers should be established to evaluate the severity and prognosis. Positron emission tomography (PET) offers a great opportunity to visualize AD from diverse perspectives by using radiolabeled agents involved in various pathophysiological processes; PET imaging technique helps to explore the pathomechanisms of AD comprehensively and find out the most appropriate biomarker in each AD phase, leading to a better evaluation of the disease. In this review, we discuss the application of PET in the course of AD and summarized radiolabeled compounds with favorable imaging characteristics.
Collapse
Affiliation(s)
- Jing Wang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
| | - Chentao Jin
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Jinyun Zhou
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Rui Zhou
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Mei Tian
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
| | - Hyeon Jeong Lee
- grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310014 Zhejiang China
| | - Hong Zhang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310014 Zhejiang China ,grid.13402.340000 0004 1759 700XKey Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310014 Zhejiang China
| |
Collapse
|
4
|
Bülbül O, Bülbül HM, Tertemiz KC, Çapa Kaya G, Gürel D, Ulukuş EÇ, Gezer NS. Contribution of F-18 fluorodeoxyglucose PET/CT and contrast-enhanced thoracic CT texture analyses to the differentiation of benign and malignant mediastinal lymph nodes. Acta Radiol 2022; 64:1443-1454. [PMID: 36259263 DOI: 10.1177/02841851221130620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Texture analysis and machine learning methods are useful in distinguishing between benign and malignant tissues. PURPOSE To discriminate benign from malignant or metastatic mediastinal lymph nodes using F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) and contrast-enhanced computed tomography (CT) texture analyses with machine learning and determine lung cancer subtypes based on the analysis of lymph nodes. MATERIAL AND METHODS Suitable texture features were entered into the algorithms. Features that statistically significantly differed between the lymph nodes with small cell lung cancer (SCLC), adenocarcinoma (ADC), and squamous cell carcinoma (SCC) were determined. RESULTS The most successful algorithms were decision tree with the sensitivity, specificity, and area under the curve (AUC) values of 89%, 50%, and 0.692, respectively, and naive Bayes (NB) with the sensitivity, specificity, and AUC values of 50%, 81%, and 0.756, respectively, for PET/CT, and NB with the sensitivity, specificity, and AUC values of 10%, 96%, and 0.515, respectively, and logistic regression with the sensitivity, specificity, and AUC values of 21%, 83%, and 0.631, respectively, for CT. In total, 13 features were able to differentiate SCLC and ADC, two features SCLC and SCC, and 33 features ADC and SCC lymph node metastases in PET/CT. One feature differed between SCLC and ADC metastases in CT. CONCLUSION Texture analysis is beneficial to discriminate between benign and malignant lymph nodes and differentiate lung cancer subtypes based on the analysis of lymph nodes.
Collapse
Affiliation(s)
- Ogün Bülbül
- Department of Nuclear Medicine, 175650Ministry of Health Recep Tayyip Erdoğan University Education and Research Hospital, Rize, Turkey
| | - Hande Melike Bülbül
- Department of Radiology, 175650Ministry of Health Recep Tayyip Erdoğan University Education and Research Hospital, Rize, Turkey
| | - Kemal Can Tertemiz
- Department of Pneumology, 64030Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Gamze Çapa Kaya
- Department of Nuclear Medicine, 64030Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Duygu Gürel
- Department of Pathology, 64030Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Emine Çağnur Ulukuş
- Department of Pathology, 64030Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Naciye Sinem Gezer
- Department of Radiology, 64030Dokuz Eylul University School of Medicine, Izmir, Turkey
| |
Collapse
|
5
|
Zhang X, Jiang H, Wu S, Wang J, Zhou R, He X, Qian S, Zhao S, Zhang H, Civelek AC, Tian M. Positron Emission Tomography Molecular Imaging for Phenotyping and Management of Lymphoma. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:102-118. [PMID: 36939797 PMCID: PMC9590515 DOI: 10.1007/s43657-021-00042-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
Positron emission tomography (PET) represents molecular imaging for non-invasive phenotyping of physiological and biochemical processes in various oncological diseases. PET imaging with 18F-fluorodeoxyglucose (18F-FDG) for glucose metabolism evaluation is the standard imaging modality for the clinical management of lymphoma. One of the 18F-FDG PET applications is the detection and pre-treatment staging of lymphoma, which is highly sensitive. 18F-FDG PET is also applied during treatment to evaluate the individual chemo-sensitivity and accordingly guide the response-adapted therapy. At the end of the therapy regiment, a negative PET scan is indicative of a good prognosis in patients with advanced Hodgkin's lymphoma and diffuse large B-cell lymphoma. Thus, adjuvant radiotherapy may be alleviated. Future PET studies using non-18F-FDG radiotracers, such as 68Ga-labeled pentixafor (a cyclic pentapeptide that enables sensitive and high-contrast imaging of C-X-C motif chemokine receptor 4), 68Ga-labeled fibroblast activation protein inhibitor (FAPI) that reflects the tumor microenvironment, and 89Zr-labeled atezolizumab that targets the programmed cell death-ligand 1 (PD-L1), may complement 18F-FDG and offer essential tools to decode lymphoma phenotypes further and identify the mechanisms of lymphoma therapy.
Collapse
Affiliation(s)
- Xiaohui Zhang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
- grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Han Jiang
- grid.411176.40000 0004 1758 0478PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian China
| | - Shuang Wu
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
- grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Jing Wang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
- grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Rui Zhou
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
- grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Xuexin He
- grid.412465.0Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
| | - Shufang Qian
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
- grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Shuilin Zhao
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
- grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Hong Zhang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
- grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China
- grid.13402.340000 0004 1759 700XKey Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027 Zhejiang China
- grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 Zhejiang China
| | - Ali Cahid Civelek
- grid.469474.c0000 0000 8617 4175Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD 21287 USA
| | - Mei Tian
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, Fudan University, Shanghai, 201203 China
| |
Collapse
|
6
|
Qi Y, Li L, Feng G, Shao C, Cai Y, Wang Z. Research Progress of Imaging Methods for Detection of Microvascular Angina Pectoris in Diabetic Patients. Front Cardiovasc Med 2021; 8:713971. [PMID: 34621798 PMCID: PMC8490615 DOI: 10.3389/fcvm.2021.713971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/27/2021] [Indexed: 12/28/2022] Open
Abstract
Diabetes is a complex metabolic disease characterized by hyperglycemia. Its complications are various, often involving the heart, brain, kidney, and other essential organs. At present, the number of diabetic patients in the world is growing day by day. The cardiovascular disease caused by diabetes has dramatically affected the quality of life of diabetic patients. It is the leading cause of death of diabetic patients. Diabetic patients often suffer from microvascular angina pectoris without obstructive coronary artery disease. Still, there are typical ECG ischemia and angina pectoris, that is, chest pain and dyspnea under exercise. Unlike obstructive coronary diseases, nitrate does not affect chest pain caused by coronary microvascular angina in most cases. With the increasing emphasis on diabetic microvascular angina, the need for accurate diagnosis of the disease is also increasing. We can use SPECT, PET, CMR, MCE, and other methods to evaluate coronary microvascular function. SPECT is commonly used in clinical practice, and PET is considered the gold standard for non-invasive detection of myocardial blood flow. This article mainly introduces the research progress of these imaging methods in detecting microvascular angina in diabetic patients.
Collapse
Affiliation(s)
- Yiming Qi
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoquan Feng
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yue Cai
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|