1
|
Shen S, Wang S, Zhou D, Wu X, Gao M, Wu J, Yang Y, Pan X, Wang N. A clinician's perspective on boron neutron capture therapy: promising advances, ongoing trials, and future outlook. Int J Radiat Biol 2024; 100:1126-1142. [PMID: 38986056 DOI: 10.1080/09553002.2024.2373746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE This comprehensive review aims to provide a unique clinical perspective on the latest advances and ongoing boron neutron capture therapy (BNCT) trials for various cancers. METHODS We critically analyzed clinical data from BNCT trials for head and neck cancer, glioblastoma, melanoma, meningioma, breast cancer, and liver tumors. We investigated differences in tumor responses and normal tissue toxicities among trials and discussed potential contributing factors. We also identified the limitations of early BNCT trials and proposed strategies to optimize future trial design. RESULTS BNCT has shown promising results in treating head and neck cancer, with high response rates and improved survival in patients with recurrent disease. In glioblastoma, BNCT combined with surgery and chemotherapy has demonstrated survival benefits compared to standard treatments. BNCT has also been successfully used for recurrent high-grade meningiomas and shows potential for melanomas, extramammary Paget's disease, and liver tumors. However, differences in tumor responses and toxicities were observed among trials, potentially attributable to variations in treatment protocols, patient characteristics, and evaluation methods. CONCLUSIONS BNCT is a promising targeted radiotherapy for various cancers. Further optimization and well-designed randomized controlled trials are needed to establish its efficacy and safety. Future studies should focus on standardizing treatment protocols and addressing limitations to guide clinical decision-making and research priorities.
Collapse
Affiliation(s)
- Shumin Shen
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shanghu Wang
- Department of Radiotherapy, Anhui Chest Hospital, Hefei, China
| | - Dachen Zhou
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xiuwei Wu
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Mingzhu Gao
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jinjin Wu
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yucai Yang
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xiaoxi Pan
- Department of Nuclear Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Nianfei Wang
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Wang Y, Du J, Lin H, Guan X, Zhang L, Li J, Gu L. A physically constrained Monte Carlo-Neural Network coupling algorithm for BNCT dose calculation. Med Phys 2024; 51:4524-4535. [PMID: 38299670 DOI: 10.1002/mp.16966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND In boron neutron capture therapy (BNCT)-a form of binary radiotherapy-the primary challenge in treatment planning systems for dose calculations arises from the time-consuming nature of the Monte Carlo (MC) method. Recent progress, including the use of neural networks (NN), has been made to accelerate BNCT dose calculations. However, this approach may result in significant dose errors in both the tumor and the skin, with the latter being a critical organ in BNCT. Furthermore, owing to the lack of physical processes in purely NN-based approaches, their reliability for clinical dose calculations in BNCT is questionable. PURPOSE In this study, a physically constrained MC-NN (PCMC-NN) coupling algorithm is proposed to achieve fast and accurate computation of the BNCT three-dimensional (3D) therapeutic dose distribution. This approach synergizes the high precision of the MC method with the speed of the NN and utilizes physical conservation laws to constrain the coupling process. It addresses the time-consuming issue of the traditional MC method while reducing dose errors. METHODS Clinical data were collected from 113 glioblastoma patients. For each patient, the 3D dose distributions for both the coarse and detailed dose grids were calculated using the MC code PHITS. Among these patients, the data from 14 patients were allocated to the test set, 9 to the validation set, and the remaining to the training set. A neural network, 3D-Unet, was built based on the coarse grid dose and patient CT information to enable fast and accurate computation of the 3D detailed grid dose distribution of BNCT. RESULTS Statistical evaluations, including relative deviation, dose deviation, mean absolute error (MAE), and mean absolute percentage error (MAPE) were conducted. Our findings suggested that the PCMC-NN algorithm substantially outperformed the traditional NN and interpolation methods. Furthermore, the proposed algorithm significantly reduced errors, particularly in the skin and GTV, and improved computational accuracy (hereinafter referred to simply as 'accuracy') with a MAPE range of 1.6%-4.0% and a maximum MAE of 0.3 Gy (IsoE) for different organs. The dose-volume histograms generated by the PCMC-NN aligned well with those obtained from the MC method, further validating its accuracy. CONCLUSIONS The PCMC-NN algorithm enhanced the speed and accuracy of BNCT dose calculations by combining the MC method with the NN algorithm. This indicates the significant potential of the proposed algorithm for clinical applications in optimizing treatment planning.
Collapse
Affiliation(s)
- Yongquan Wang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Junliang Du
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Huan Lin
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Xingcai Guan
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
- Southeast Research Institute of Lanzhou University, Putian, China
| | - Lu Zhang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
- Southeast Research Institute of Lanzhou University, Putian, China
| | - Jinyang Li
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Long Gu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Raitano A, Martin T, Zhang C, Malinao MC, Capo L, Ikeura M, Carroll R, Quintana JC, Dlamini S, Kulenovic L, Jahanshir E, Kang S, Morrison K, Torgov M, Morrison K. Boronotyrosine, a Borylated Amino Acid Mimetic with Enhanced Solubility, Tumor Boron Delivery, and Retention for the Re-emerging Boron Neutron Capture Therapy Field. J Med Chem 2023; 66:13809-13820. [PMID: 37729617 DOI: 10.1021/acs.jmedchem.3c01265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Boron neutron capture therapy (BNCT) is a re-emerging binary cellular level cancer intervention that occurs through the interaction of a cancer-specific 10boron (10B) drug and neutrons. We created a new 10B drug, 3-borono-l-tyrosine (BTS), that improves on the characteristics of the main historical BNCT drug 4-borono-l-phenylalanine (BPA). BTS has up to 4 times greater uptake in vitro than BPA and increased cellular retention. Like BPA, BTS uptake is mediated by the l-type amino acid transporter-1 (LAT1) but is less sensitive to natural amino acid competition. BTS can be formulated and bolus dosed at much higher levels than BPA, resulting in 2-3 times greater boron delivery in vivo. Fast blood clearance and greater tumor boron delivery result in superior tumor-to-blood ratios. BTS boron delivery appears to correlate with LAT1 expression. BTS is a promising boron delivery drug that has the potential to improve modern BNCT interventions.
Collapse
Affiliation(s)
- Arthur Raitano
- Drug Development Division, TAE Life Sciences, 1756 Cloverfield Boulevard, Santa Monica, California 90404, United States
| | - Tioga Martin
- Drug Development Division, TAE Life Sciences, 1756 Cloverfield Boulevard, Santa Monica, California 90404, United States
| | - Chunying Zhang
- Drug Development Division, TAE Life Sciences, 1756 Cloverfield Boulevard, Santa Monica, California 90404, United States
| | - Maria-Christina Malinao
- Drug Development Division, TAE Life Sciences, 1756 Cloverfield Boulevard, Santa Monica, California 90404, United States
| | - Linnette Capo
- Drug Development Division, TAE Life Sciences, 1756 Cloverfield Boulevard, Santa Monica, California 90404, United States
| | - Maki Ikeura
- Drug Development Division, TAE Life Sciences, 1756 Cloverfield Boulevard, Santa Monica, California 90404, United States
| | - Rebecca Carroll
- Drug Development Division, TAE Life Sciences, 1756 Cloverfield Boulevard, Santa Monica, California 90404, United States
| | - Jason C Quintana
- Drug Development Division, TAE Life Sciences, 1756 Cloverfield Boulevard, Santa Monica, California 90404, United States
| | - Samkeliso Dlamini
- Drug Development Division, TAE Life Sciences, 1756 Cloverfield Boulevard, Santa Monica, California 90404, United States
| | - Leila Kulenovic
- Drug Development Division, TAE Life Sciences, 1756 Cloverfield Boulevard, Santa Monica, California 90404, United States
| | - Eva Jahanshir
- Drug Development Division, TAE Life Sciences, 1756 Cloverfield Boulevard, Santa Monica, California 90404, United States
| | - Sohye Kang
- Drug Development Division, TAE Life Sciences, 1756 Cloverfield Boulevard, Santa Monica, California 90404, United States
| | - Karen Morrison
- Drug Development Division, TAE Life Sciences, 1756 Cloverfield Boulevard, Santa Monica, California 90404, United States
| | - Michael Torgov
- Drug Development Division, TAE Life Sciences, 1756 Cloverfield Boulevard, Santa Monica, California 90404, United States
| | - Kendall Morrison
- Drug Development Division, TAE Life Sciences, 1756 Cloverfield Boulevard, Santa Monica, California 90404, United States
| |
Collapse
|
4
|
Kanygin V, Zaboronok A, Kichigin A, Petrova E, Guselnikova T, Kozlov A, Lukichev D, Mathis BJ, Taskaev S. Gadolinium Neutron Capture Therapy for Cats and Dogs with Spontaneous Tumors Using Gd-DTPA. Vet Sci 2023; 10:vetsci10040274. [PMID: 37104429 PMCID: PMC10142813 DOI: 10.3390/vetsci10040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
We conducted a clinical veterinary study on neutron capture therapy (NCT) at a neutron-producing accelerator with seven incurable pets with spontaneous tumors and gadolinium as a neutron capture agent (gadolinium neutron capture therapy, or GdNCT). Gadolinium-containing dimeglumine gadopentetate, or Gd-DTPA (Magnevist®, 0.6 mL/kg b.w.), was used. We observed mild and reversible toxicity related to the treatment. However, no significant tumor regression in response to the treatment was observed. In most cases, there was continued tumor growth. Overall clinical improvement after treatment was only temporary. The use of Gd-DTPA for NCT had no significant effects on the life expectancy and quality of life of animals with spontaneous tumors. Further experiments using more advanced gadolinium compounds are needed to improve the effect of GdNCT so that it can become an alternative to boron neutron capture therapy. Such studies are also necessary for further NCT implementation in clinical practice as well as in veterinary medicine.
Collapse
Affiliation(s)
- Vladimir Kanygin
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, ave. Lavrentiev, 11, 630090 Novosibirsk, Russia
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
| | - Alexander Zaboronok
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Ibaraki, Japan
| | - Aleksandr Kichigin
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, ave. Lavrentiev, 11, 630090 Novosibirsk, Russia
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
| | - Elena Petrova
- Veterinary Clinic “Best”, Frunze str., 57, 630005 Novosibirsk, Russia
| | - Tatyana Guselnikova
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, ave. Lavrentiev, 3, 630090 Novosibirsk, Russia
| | - Andrey Kozlov
- Clinical Hospital “Avicenna”, Uritskogo str., 2, 630007 Novosibirsk, Russia
| | - Dmitriy Lukichev
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, Amakubo 2-1-1, Tsukuba 305-8576, Ibaraki, Japan
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, ave. Lavrentiev, 11, 630090 Novosibirsk, Russia
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Capala J, Hong JA, Vikram B, Coleman CN. Neutron Capture Therapy: The Promise of Novel Agents and Medical Facility-Based Neutron Sources. Cancer Biother Radiopharm 2023; 38:141-142. [PMID: 37023402 DOI: 10.1089/cbr.2022.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Affiliation(s)
- Jacek Capala
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Julie A Hong
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Bhadrasain Vikram
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|