1
|
Mirkiani S, O’Sullivan CL, Roszko DA, Faridi P, Hu DS, Everaert DG, Toossi A, Kang R, Fang T, Tyreman N, Dalrymple AN, Robinson K, Uwiera RRE, Shah H, Fox R, Konrad PE, Mushahwar VK. Safety of mapping the motor networks in the spinal cord using penetrating microelectrodes in Yucatan minipigs. J Neurosurg Spine 2024; 41:292-304. [PMID: 38728765 PMCID: PMC11174925 DOI: 10.3171/2024.2.spine23757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 02/21/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVE The goal of this study was to assess the safety of mapping spinal cord locomotor networks using penetrating stimulation microelectrodes in Yucatan minipigs (YMPs) as a clinically translational animal model. METHODS Eleven YMPs were trained to walk up and down a straight line. Motion capture was performed, and electromyographic (EMG) activity of hindlimb muscles was recorded during overground walking. The YMPs underwent a laminectomy and durotomy to expose the lumbar spinal cord. Using an ultrasound-guided stereotaxic frame, microelectrodes were inserted into the spinal cord in 8 animals. Pial cuts were made to prevent tissue dimpling before microelectrode insertion. Different locations within the lumbar enlargement were electrically stimulated to map the locomotor networks. The remaining 3 YMPs served as sham controls, receiving the laminectomy, durotomy, and pial cuts but not microelectrode insertion. The Porcine Thoracic Injury Behavioral Scale (PTIBS) and hindlimb reflex assessment results were recorded for 4 weeks postoperatively. Overground gait kinematics and hindlimb EMG activity were recorded again at weeks 3 and 4 postoperatively and compared with preoperative measures. The animals were euthanized at the end of week 4, and the lumbar spinal cords were extracted and preserved for immunohistochemical analysis. RESULTS All YMPs showed transient deficits in hindlimb function postoperatively. Except for 1 YMP in the experimental group, all animals regained normal ambulation and balance (PTIBS score 10) at the end of weeks 3 and 4. One animal in the experimental group showed gait and balance deficits by week 4 (PTIBS score 4). This animal was excluded from the kinematics and EMG analyses. Overground gait kinematic measures and EMG activity showed no significant (p > 0.05) differences between preoperative and postoperative values, and between the experimental and sham groups. Less than 5% of electrode tracks were visible in the tissue analysis of the animals in the experimental group. There was no statistically significant difference in damage caused by pial cuts between the experimental and sham groups. Tissue damage due to the pial cuts was more frequently observed in immunohistochemical analyses than microelectrode tracks. CONCLUSIONS These findings suggest that mapping spinal locomotor networks in porcine models can be performed safely, without lasting damage to the spinal cord.
Collapse
Affiliation(s)
- Soroush Mirkiani
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Institute for Augmentative and Restorative Technologies and Health Innovations (iSMART), University of Alberta, Edmonton, Alberta, Canada
| | - Carly L. O’Sullivan
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Institute for Augmentative and Restorative Technologies and Health Innovations (iSMART), University of Alberta, Edmonton, Alberta, Canada
| | - David A. Roszko
- Institute for Augmentative and Restorative Technologies and Health Innovations (iSMART), University of Alberta, Edmonton, Alberta, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Ontario, Canada
| | - Pouria Faridi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Institute for Augmentative and Restorative Technologies and Health Innovations (iSMART), University of Alberta, Edmonton, Alberta, Canada
| | - David S. Hu
- Institute for Augmentative and Restorative Technologies and Health Innovations (iSMART), University of Alberta, Edmonton, Alberta, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Dirk G. Everaert
- Institute for Augmentative and Restorative Technologies and Health Innovations (iSMART), University of Alberta, Edmonton, Alberta, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Amirali Toossi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Institute for Augmentative and Restorative Technologies and Health Innovations (iSMART), University of Alberta, Edmonton, Alberta, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan Kang
- Institute for Augmentative and Restorative Technologies and Health Innovations (iSMART), University of Alberta, Edmonton, Alberta, Canada
| | - Tongzhou Fang
- Institute for Augmentative and Restorative Technologies and Health Innovations (iSMART), University of Alberta, Edmonton, Alberta, Canada
| | - Neil Tyreman
- Institute for Augmentative and Restorative Technologies and Health Innovations (iSMART), University of Alberta, Edmonton, Alberta, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ashley N. Dalrymple
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Institute for Augmentative and Restorative Technologies and Health Innovations (iSMART), University of Alberta, Edmonton, Alberta, Canada
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Kevin Robinson
- School of Physical Therapy, Belmont University, Nashville, Tennessee
| | - Richard R. E. Uwiera
- Institute for Augmentative and Restorative Technologies and Health Innovations (iSMART), University of Alberta, Edmonton, Alberta, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Hamid Shah
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Richard Fox
- Institute for Augmentative and Restorative Technologies and Health Innovations (iSMART), University of Alberta, Edmonton, Alberta, Canada
- Division of Neurosurgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Peter E. Konrad
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia; and
- Integrative Neuroscience & Clinical Innovation, Rockefeller Neuroscience Institute, Morgantown, West Virginia
| | - Vivian K. Mushahwar
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Institute for Augmentative and Restorative Technologies and Health Innovations (iSMART), University of Alberta, Edmonton, Alberta, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Wathen CA, Ghenbot YG, Ozturk AK, Cullen DK, O’Donnell JC, Petrov D. Porcine Models of Spinal Cord Injury. Biomedicines 2023; 11:2202. [PMID: 37626699 PMCID: PMC10452184 DOI: 10.3390/biomedicines11082202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Large animal models of spinal cord injury may be useful tools in facilitating the development of translational therapies for spinal cord injury (SCI). Porcine models of SCI are of particular interest due to significant anatomic and physiologic similarities to humans. The similar size and functional organization of the porcine spinal cord, for instance, may facilitate more accurate evaluation of axonal regeneration across long distances that more closely resemble the realities of clinical SCI. Furthermore, the porcine cardiovascular system closely resembles that of humans, including at the level of the spinal cord vascular supply. These anatomic and physiologic similarities to humans not only enable more representative SCI models with the ability to accurately evaluate the translational potential of novel therapies, especially biologics, they also facilitate the collection of physiologic data to assess response to therapy in a setting similar to those used in the clinical management of SCI. This review summarizes the current landscape of porcine spinal cord injury research, including the available models, outcome measures, and the strengths, limitations, and alternatives to porcine models. As the number of investigational SCI therapies grow, porcine SCI models provide an attractive platform for the evaluation of promising treatments prior to clinical translation.
Collapse
Affiliation(s)
- Connor A. Wathen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.A.W.); (Y.G.G.); (A.K.O.); (D.K.C.); (J.C.O.)
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Yohannes G. Ghenbot
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.A.W.); (Y.G.G.); (A.K.O.); (D.K.C.); (J.C.O.)
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Ali K. Ozturk
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.A.W.); (Y.G.G.); (A.K.O.); (D.K.C.); (J.C.O.)
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.A.W.); (Y.G.G.); (A.K.O.); (D.K.C.); (J.C.O.)
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John C. O’Donnell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.A.W.); (Y.G.G.); (A.K.O.); (D.K.C.); (J.C.O.)
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Dmitriy Petrov
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.A.W.); (Y.G.G.); (A.K.O.); (D.K.C.); (J.C.O.)
| |
Collapse
|
3
|
Weber-Levine C, Hersh AM, Jiang K, Routkevitch D, Tsehay Y, Perdomo-Pantoja A, Judy BF, Kerensky M, Liu A, Adams M, Izzi J, Doloff JC, Manbachi A, Theodore N. Porcine Model of Spinal Cord Injury: A Systematic Review. Neurotrauma Rep 2022; 3:352-368. [PMID: 36204385 PMCID: PMC9531891 DOI: 10.1089/neur.2022.0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating disease with limited effective treatment options. Animal paradigms are vital for understanding the pathogenesis of SCI and testing potential therapeutics. The porcine model of SCI is increasingly favored because of its greater similarity to humans. However, its adoption is limited by the complexities of care and range of testing parameters. Researchers need to consider swine selection, injury method, post-operative care, rehabilitation, behavioral outcomes, and histology metrics. Therefore, we systematically reviewed full-text English-language articles to evaluate study characteristics used in developing a porcine model and summarize the interventions that have been tested using this paradigm. A total of 63 studies were included, with 33 examining SCI pathogenesis and 30 testing interventions. Studies had an average sample size of 15 pigs with an average weight of 26 kg, and most used female swine with injury to the thoracic cord. Injury was most commonly induced by weight drop with compression. The porcine model is amenable to testing various interventions, including mean arterial pressure augmentation (n = 7), electrical stimulation (n = 6), stem cell therapy (n = 5), hypothermia (n = 2), biomaterials (n = 2), gene therapy (n = 2), steroids (n = 1), and nanoparticles (n = 1). It is also notable for its clinical translatability and is emerging as a valuable pre-clinical study tool. This systematic review can serve as a guideline for researchers implementing and testing the porcine SCI model.
Collapse
Affiliation(s)
- Carly Weber-Levine
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly Jiang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Denis Routkevitch
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yohannes Tsehay
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Brendan F. Judy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Max Kerensky
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ann Liu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melanie Adams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica Izzi
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joshua C. Doloff
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amir Manbachi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Assunção Silva RC, Pinto L, Salgado AJ. Cell transplantation and secretome based approaches in spinal cord injury regenerative medicine. Med Res Rev 2021; 42:850-896. [PMID: 34783046 DOI: 10.1002/med.21865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/12/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
The axonal growth-restrictive character of traumatic spinal cord injury (SCI) makes finding a therapeutic strategy a very demanding task, due to the postinjury events impeditive to spontaneous axonal outgrowth and regeneration. Considering SCI pathophysiology complexity, it has been suggested that an effective therapy should tackle all the SCI-related aspects and provide sensory and motor improvement to SCI patients. Thus, the current aim of any therapeutic approach for SCI relies in providing neuroprotection and support neuroregeneration. Acknowledging the current SCI treatment paradigm, cell transplantation is one of the most explored approaches for SCI with mesenchymal stem cells (MSCs) being in the forefront of many of these. Studies showing the beneficial effects of MSC transplantation after SCI have been proposing a paracrine action of these cells on the injured tissues, through the secretion of protective and trophic factors, rather than attributing it to the action of cells itself. This manuscript provides detailed information on the most recent data regarding the neuroregenerative effect of the secretome of MSCs as a cell-free based therapy for SCI. The main challenge of any strategy proposed for SCI treatment relies in obtaining robust preclinical evidence from in vitro and in vivo models, before moving to the clinics, so we have specifically focused on the available vertebrate and mammal models of SCI currently used in research and how can SCI field benefit from them.
Collapse
Affiliation(s)
- Rita C Assunção Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal.,BnML, Behavioral and Molecular Lab, Braga, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal.,BnML, Behavioral and Molecular Lab, Braga, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
5
|
Züchner M, Escalona MJ, Teige LH, Balafas E, Zhang L, Kostomitsopoulos N, Boulland JL. How to generate graded spinal cord injuries in swine - tools and procedures. Dis Model Mech 2021; 14:dmm049053. [PMID: 34464444 PMCID: PMC8419714 DOI: 10.1242/dmm.049053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a medically, psychologically and socially disabling condition. A large body of our knowledge on the basic mechanisms of SCI has been gathered in rodents. For preclinical validation of promising therapies, the use of animal models that are closer to humans has several advantages. This has promoted the more-intensive development of large-animal models for SCI during the past decade. We recently developed a multimodal SCI apparatus for large animals that generated biomechanically reproducible impacts in vivo. It is composed of a spring-load impactor and support systems for the spinal cord and the vertebral column. We now present the functional outcome of farm pigs and minipigs injured with different lesion strengths. There was a correlation between the biomechanical characteristics of the impact, the functional outcome and the tissue damage observed several weeks after injury. We also provide a detailed description of the procedure to generate such a SCI in both farm pigs and minipigs, in the hope to ease the adoption of the swine model by other research groups.
Collapse
Affiliation(s)
- Mark Züchner
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Manuel J. Escalona
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Lena Hammerlund Teige
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Evangelos Balafas
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of Academy of Athens, 11527 Athens, Greece
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Nikolaos Kostomitsopoulos
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of Academy of Athens, 11527 Athens, Greece
| | - Jean-Luc Boulland
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| |
Collapse
|
6
|
Epidural Stimulation Combined with Triple Gene Therapy for Spinal Cord Injury Treatment. Int J Mol Sci 2020; 21:ijms21238896. [PMID: 33255323 PMCID: PMC7734573 DOI: 10.3390/ijms21238896] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
The translation of new therapies for spinal cord injury to clinical trials can be facilitated with large animal models close in morpho-physiological scale to humans. Here, we report functional restoration and morphological reorganization after spinal contusion in pigs, following a combined treatment of locomotor training facilitated with epidural electrical stimulation (EES) and cell-mediated triple gene therapy with umbilical cord blood mononuclear cells overexpressing recombinant vascular endothelial growth factor, glial-derived neurotrophic factor, and neural cell adhesion molecule. Preliminary results obtained on a small sample of pigs 2 months after spinal contusion revealed the difference in post-traumatic spinal cord outcomes in control and treated animals. In treated pigs, motor performance was enabled by EES and the corresponding morpho-functional changes in hind limb skeletal muscles were accompanied by the reorganization of the glial cell, the reaction of stress cell, and synaptic proteins. Our data demonstrate effects of combined EES-facilitated motor training and cell-mediated triple gene therapy after spinal contusion in large animals, informing a background for further animal studies and clinical translation.
Collapse
|
7
|
Holland MT, Seaman SC, Woodroffe RW, Fredericks DC, Kovach CK, Gibson-Corley KN, Gillies GT, Howard MA. In Vivo Testing of a Prototype Intradural Spinal Cord Stimulator in a Porcine Model. World Neurosurg 2020; 137:e634-e641. [PMID: 32112934 DOI: 10.1016/j.wneu.2020.02.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chronic midline low back pain is the number one reason for disability in the United States despite the prolific use of medical and surgical interventions. Notwithstanding the widespread use of epidural spinal cord stimulators (SCSs), there remains a large portion of the population with inadequate pain control thought to be because of the limited volume of stimulated neural tissue. Intradural SCSs represent an underexplored alternative strategy with the potential to improve selectivity, power efficiency, and efficacy. We studied and carried out development of an intradural form of an SCS. Herein we present the findings of in vivo testing of a prototype intradural SCS in a porcine model. METHODS Six female juvenile pigs underwent surgical investigation. One control animal underwent a laminectomy only, whereas the 5 other animals had implantation of an intradural SCS prototype. One of the prototypes was fully wired to enable acute stimulation and concurrent electromyographic recordings. All animals underwent terminal surgery 3 months postimplantation, with harvesting of the spinal column. Imaging (microcomputed tomography scan) and histopathologic examinations were subsequently performed. RESULTS All animals survived implantation without evidence of neurologic deficits or infection. Postmortem imaging and histopathologic examination of the spinal column revealed no evidence of spinal cord damage, cerebrospinal fluid fistula formation, abnormal bony overgrowth, or dural defect. Viable dura was present between the intra- and extradural plates of the device. Electromyographic recordings revealed evoked motor units from the stimulator. CONCLUSIONS Chronically implanted intradural device in the porcine model demonstrated safety and feasibility for translation into humans.
Collapse
Affiliation(s)
- Marshall T Holland
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Scott C Seaman
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Royce W Woodroffe
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Douglas C Fredericks
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Christopher K Kovach
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | | | - George T Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA.
| |
Collapse
|
8
|
Differences in Morphometric Measures of the Uninjured Porcine Spinal Cord and Dural Sac Predict Histological and Behavioral Outcomes after Traumatic Spinal Cord Injury. J Neurotrauma 2019; 36:3005-3017. [DOI: 10.1089/neu.2018.5930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
9
|
Züchner M, Lervik A, Kondratskaya E, Bettembourg V, Zhang L, Haga HA, Boulland JL. Development of a Multimodal Apparatus to Generate Biomechanically Reproducible Spinal Cord Injuries in Large Animals. Front Neurol 2019; 10:223. [PMID: 30941086 PMCID: PMC6433700 DOI: 10.3389/fneur.2019.00223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/21/2019] [Indexed: 01/08/2023] Open
Abstract
Rodents are widespread animal models in spinal cord injury (SCI) research. They have contributed to obtaining important information. However, some treatments only tested in rodents did not prove efficient in clinical trials. This is probably a result of significant differences in the physiology, anatomy, and complexity between humans and rodents. To bridge this gap in a better way, a few research groups use pig models for SCI. Here we report the development of an apparatus to perform biomechanically reproducible SCI in large animals, including pigs. We present the iterative process of engineering, starting with a weight-drop system to ultimately produce a spring-load impactor. This device allows a graded combination of a contusion and a compression injury. We further engineered a device to entrap the spinal cord and prevent it from escaping at the moment of the impact. In addition, it provides identical resistance around the cord, thereby, optimizing the inter-animal reproducibility. We also present other tools to straighten the vertebral column and to ease the surgery. Sensors mounted on the impactor provide information to assess the inter-animal reproducibility of the impacts. Further evaluation of the injury strength using neurophysiological recordings, MRI scans, and histology shows consistency between impacts. We conclude that this apparatus provides biomechanically reproducible spinal cord injuries in pigs.
Collapse
Affiliation(s)
- Mark Züchner
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Lervik
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Elena Kondratskaya
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| | - Vanessa Bettembourg
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Henning A Haga
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Jean-Luc Boulland
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
Wilson S, Nagel SJ, Frizon LA, Fredericks DC, DeVries-Watson NA, Gillies GT, Howard MA. The Hemisection Approach in Large Animal Models of Spinal Cord Injury: Overview of Methods and Applications. J INVEST SURG 2018; 33:240-251. [PMID: 30380340 DOI: 10.1080/08941939.2018.1492048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Introduction: Translating basic science research into a safe and effective therapy for spinal cord injury (SCI) requires suitable large animal models for testing both implantable devices and biologic approaches to better approximate human anatomy and function. Hemisection lesions, routinely used for investigational purposes in small animals, are less frequently described in large animals that might be appropriate for translational studies. Size constraints of small animals (mice and rats) limits the predictability of the findings when scaled up. Our goal is to review the status of hemisection SCI in large animals across species and time to prepare for the testing of a novel intradural spinal cord stimulation device for control of spasticity in an ovine model. Methods and Results: We surveyed the literature on hemisection in quadrupeds and nonhuman primates, and catalogued the species, protocols and outcomes of the experimental work in this field. Feline, lapine, canine, simian, porcine, ovine and bovine models were the primary focal points. There is a consistent body of literature reporting use of the hemisection approach in large animals, but with differences in surgical technique depending on the goals and nature of the individual studies. While the injuries are not always consistent, the experimental variability is generally lower than that of the contusion-based approach. In general, as the body size of the animal increases, animal care requirements and the associated costs follow. In most cases, this is inversely correlated with the number of animals used in hemisection models. Conclusions: The hemisection approach to modeling SCI is straightforward compared with other methods such as the contusive impact and enables the transection of isolated ascending and descending tracts and segment specific cell bodies. This has certain advantages in models investigating post-injury axonal regrowth. However, this approach is not generally in line with the patho-physiologies encountered in SCI patients. Even so, the ability to achieve more control over the level of injury makes it a useful adjunct to contusive and ischemic approaches, and suggests a useful role in future translational studies.
Collapse
Affiliation(s)
- S Wilson
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - S J Nagel
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - L A Frizon
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - D C Fredericks
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - N A DeVries-Watson
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - G T Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - M A Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
11
|
Khatri M, Richardson LA. Therapeutic potential of porcine bronchoalveolar fluid-derived mesenchymal stromal cells in a pig model of LPS-induced ALI. J Cell Physiol 2018; 233:5447-5457. [PMID: 29231967 DOI: 10.1002/jcp.26397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
In this study, we isolated mesenchymal stromal (stem) cells (MSCs) from broncho-alveolar lavage fluid (BAL) of 2-6-week-old commercial pigs. BAL-MSCs displayed fibroblastic morphology and possessed self-renewal properties. Similar to bone-marrow MSCs, BAL-MSCs expressed mesenchymal markers and both cell types lacked the expression of hematopoetic markers. BAL-MSCs, when cultured in differentiation induction media, differentiated into adipocytes, osteocytes, and chondrocytes. Next, we examined if BAL-MSCs have the ability to treat lipopolysaccharide (LPS)-induced acute lung injury (ALI) in a pig model. Five-week-old commercial pigs were inoculated intra-tracheally with E. coli LPS (1 mg/kg body weight [b.wt.]). Twelve hours after the LPS inoculation, groups of pigs were inoculated intra-tracheally with BM-MSCs or BAL-MSCs (2 × 106 cells/kg b.wt.). Forty eight hours after the cells administration pigs were euthanized and neutrophils in BAL, lung lesions, and cytokines in lung lysates, and engraftment of MSCs in lungs were examined. Engraftment of BAL-MSCs in injured lungs was significantly higher than the BM-MSCs, however, both cell types were equally effective in attenuating LPS-induced ALI as evidenced by decreased inflammation, lung lesions, and proinflammatory cytokines in the lungs of pigs treated with BAL- or BM-MSCs. These data in a preclinical large animal model suggest that BAL-MSCs may be used in clinical settings to treat ALI in humans.
Collapse
Affiliation(s)
- Mahesh Khatri
- Department of Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio
| | - Levi A Richardson
- Department of Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio
| |
Collapse
|
12
|
Petteys RJ, Spitz SM, Syed H, Rice RA, Sarabia-Estrada R, Goodwin CR, Sciubba DM, Freedman BA. Design and testing of a controlled electromagnetic spinal cord impactor for use in large animal models of acute traumatic spinal cord injury. J Clin Neurosci 2017; 43:229-234. [PMID: 28539210 DOI: 10.1016/j.jocn.2017.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/22/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) causes debilitating neurological dysfunction and has been observed in warfighters injured in IED blasts. Clinical benefit of SCI treatment remains elusive and better large animal models are needed to assess treatment options. Here, we describe a controlled electromagnetic spinal cord impactor for use in large animal models of SCI. METHODS A custom spinal cord impactor and platform were fabricated for large animals (e.g., pig, sheep, dog, etc.). Impacts were generated by a voice coil actuator; force and displacement were measured with a load cell and potentiometer respectively. Labview (National Instruments, Austin, TX) software was used to control the impact cycle and import force and displacement data. Software finite impulse response (FIR) filtering was employed for all input data. Silicon tubing was used a surrogate for spinal cord in order to test the device; repeated impacts were performed at 15, 25, and 40 Newtons. RESULTS Repeated impacts demonstrated predictable results at each target force. The average duration of impact was 71.2 ±6.1ms. At a target force of 40N, the output force was 41.5 ±0.7N. With a target of 25N, the output force was 23.5 ±0.6N; a target of 15Newtons revealed an output force of 15.2 ±1.4N. The calculated acceleration range was 12.5-21.2m/s2. CONCLUSIONS This custom spinal cord impactor reliably delivers precise impacts to the spinal cord and will be utilized in future research to study acute traumatic SCI in a large animal.
Collapse
Affiliation(s)
- Rory J Petteys
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Neurosurgery, William Beaumont Army Medical Center, El Paso, TX, USA.
| | - Steven M Spitz
- Department of Neurosurgery, Georgetown University Hospital, Washington, DC, USA
| | - Hasan Syed
- Department of Neurosurgery, Georgetown University Hospital, Washington, DC, USA
| | - R Andrew Rice
- Department of Neurosurgery, Georgetown University Hospital, Washington, DC, USA
| | - Rachel Sarabia-Estrada
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - C Rory Goodwin
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brett A Freedman
- Department of Orthopedic Surgery, Mayo Clinic School of Medicine, Rochester, MN, USA
| |
Collapse
|
13
|
Schomberg DT, Miranpuri GS, Chopra A, Patel K, Meudt JJ, Tellez A, Resnick DK, Shanmuganayagam D. Translational Relevance of Swine Models of Spinal Cord Injury. J Neurotrauma 2017; 34:541-551. [DOI: 10.1089/neu.2016.4567] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Dominic T. Schomberg
- Biomedical and Genomic Research Group, Department of Animal Sciences, University of Wisconsin–Madison, Wisconsin
| | - Gurwattan S. Miranpuri
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Abhishek Chopra
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kush Patel
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jennifer J. Meudt
- Biomedical and Genomic Research Group, Department of Animal Sciences, University of Wisconsin–Madison, Wisconsin
| | | | - Daniel K. Resnick
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Dhanansayan Shanmuganayagam
- Biomedical and Genomic Research Group, Department of Animal Sciences, University of Wisconsin–Madison, Wisconsin
| |
Collapse
|
14
|
Zhou DAA, Deng YN, Liu L, Li JJ. Effect of kidney-reinforcing and marrow-beneficial Chinese medicine on bone metabolism-related factors following spinal cord injury in rats. Exp Ther Med 2016; 12:485-491. [PMID: 27347083 DOI: 10.3892/etm.2016.3304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 01/15/2016] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effect of traditional Chinese kidney reinforcing and marrow-beneficial medicine (KRMB) on the prevention and treatment of abnormal bone metabolism and osteoporosis (OP) resulting from spinal cord injury (SCI). Rat models of OP following SCI were surgically established. The rats were randomly divided into five groups: Normal; sham operation + KRMB; normal + KRMB; SCI + KRMB; and SCI model group. Bone mineral density (BMD), and the expression of bone gamma-carboxyglutamic-acid containing protein (BGP), hepcidin mRNA and bone sialoprotein (BSP) were recorded at 1, 2, 4, 6, 8 and 10 weeks after the operation. BMD expression in the SCI model group was significantly lower compared with the normal, sham + KRMB and normal + KRMB groups at 4, 6, 8 and 10 weeks (P<0.01), and was significantly lower than that in the SCI + KRMB group at 6 (P<0.05), 8 and 10 weeks (P<0.01). The level of serum BGP in the SCI model group was significantly higher compared with the normal, sham + KRMB and normal + KRMB groups at each time point (P<0.01), and lower than the SCI + KRMB group (P<0.01). The SCI + KRMB group was significantly higher than the normal, sham operation + KRMB and normal + KRMB groups (P<0.01). Hepcidin mRNA expression in the rat livers in the normal, sham + KRMB and normal + KRMB group was significantly higher than that in the SCI + KRMB group and SCI model group at each time point (P<0.01). Hepcidin mRNA expression in the SCI + KRMB group was significantly higher than that in the SCI model group at 1 week (P<0.01), and significantly higher than the SCI model group at 2, 4, 6, 8 and 10 weeks (P<0.01). BSP expression in the SCI model group was significantly higher than that in the normal, sham + KRMB and normal + KRMB groups at each time point (P<0.01). BSP expression in SCI model group was higher than that in the SCI + KRMB group at 1 (P<0.05), 2, 4, 6, 8 and 10 weeks (P<0.01). In conclusion, KRMB traditional Chinese medicine may have a curative effect on secondary OP resulting from SCI.
Collapse
Affiliation(s)
- DA-An Zhou
- Department of Rehabilitation, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Center, Beijing 100086, P.R. China
| | - Yue Ning Deng
- Department of Rehabilitation, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Lei Liu
- Department of Rehabilitation, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Jian Jun Li
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Center, Beijing 100086, P.R. China
| |
Collapse
|
15
|
Khatri M, Chattha KS. Replication of influenza A virus in swine umbilical cord epithelial stem-like cells. Virulence 2016; 6:40-9. [PMID: 25517546 DOI: 10.4161/21505594.2014.983020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this study, we describe the isolation and characterization of epithelial stem-like cells from the swine umbilical cord and their susceptibility to influenza virus infection. Swine umbilical cord epithelial stem cells (SUCECs) expressed stem cell and pluripotency associated markers such as SSEA-1, SSEA-4, TRA 1-60 and TRA 1-81 and Oct4. Morphologically, cells displayed polygonal morphology and were found to express epithelial markers; pancytokeratin, cytokeratin-18 and occludin; mesenchymal cell markers CD44, CD90 and haematopoietic cell marker CD45 were not detected on these cells. The cells had extensive proliferation and self- renewal properties. The cells also possessed immunomodulatory activity and inhibited the proliferation of T cells. Also, higher levels of anti-inflammatory cytokine IL-10 were detected in SUCEC-T cell co-cultures. The cells were multipotent and differentiated into lung epithelial cells when cultured in epithelial differentiation media. We also examined if SUCECs are susceptible to infection with influenza virus. SUCECs expressed sialic acid receptors, used by influenza virus for binding to cells. The 2009 pandemic influenza virus and swine influenza virus replicated in these cells. SUCECs due to their differentiation and immunoregulatory properties will be useful as cellular therapy in a pig model for human diseases. Additionally, our data indicate that influenza virus can infect SUCECs and may transmit influenza virus from mother to fetus through umbilical cord and transplantation of influenza virus-infected stem cells may transmit infection to recipients. Therefore, we propose that umbilical cord cells, in addition to other agents, should also be tested for influenza virus before cryopreservation for future use as a cell therapy for disease conditions.
Collapse
Affiliation(s)
- Mahesh Khatri
- a Food Animal Health Research Program; Ohio Agricultural Research and Development Center; The Ohio State University ; Wooster , OH United States
| | | |
Collapse
|
16
|
Khatri M, O'Brien TD, Chattha KS, Saif LJ. Porcine lung mesenchymal stromal cells possess differentiation and immunoregulatory properties. Stem Cell Res Ther 2015; 6:222. [PMID: 26560714 PMCID: PMC4642738 DOI: 10.1186/s13287-015-0220-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 09/20/2014] [Accepted: 10/29/2015] [Indexed: 01/14/2023] Open
Abstract
Introduction Mesenchymal stem (stromal) cells (MSCs) possess self-renewal, differentiation and immunoregulatory properties, and therefore are being evaluated as cellular therapy for inflammatory and autoimmune diseases, and for tissue repair. MSCs isolated from bone marrow are extensively studied. Besides bone marrow, MSCs have been identified in almost all organs of the body including the lungs. Lung-derived MSCs may be more effective as therapy for lung diseases as compared to bone marrow-derived MSCs. Pigs are similar to humans in anatomy, physiology and immunological responses, and thus may serve as a useful large animal preclinical model to study potential cellular therapy for human diseases. Methods We isolated MSCs from the lungs (L-MSCs) of 4–6-week-old germ-free pigs. We determined the self-renewal, proliferation and differentiation potential of L-MSCs. We also examined the mechanisms of immunoregulation by porcine L-MSCs. Results MSCs isolated from porcine lungs showed spindle-shaped morphology and proliferated actively in culture. Porcine L-MSCs expressed mesenchymal markers CD29, CD44, CD90 and CD105 and lacked the expression of hematopoietic markers CD34 and CD45. These cells were multipotent and differentiated into adipocytes, osteocytes and epithelial cells. Like human MSCs, L-MSCs possessed immunoregulatory properties and inhibited proliferation of T cells and interferon-γ and tumor necrosis factor-α production by T cells and dendritic cells, respectively, and increased the production of T-helper 2 cytokines interleukin (IL)-4 and IL-13 by T cells. L-MSCs induced the production of prostaglandin E2 (PGE2) in MSC–T cell co-cultures and inhibition of PGE2 significantly restored (not completely) the immune modulatory effects of L-MSCs. Conclusions Here, we demonstrate that MSCs can be isolated from porcine lung and that these cells, similar to human lung MSCs, possess in vitro proliferation, differentiation and immunomodulatory functions. Thus, these cells may serve as a model system to evaluate the contribution of lung MSCs in modulating the immune response, interactions with resident epithelial cells and tissue repair in a pig model of human lung diseases.
Collapse
Affiliation(s)
- Mahesh Khatri
- Department of Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA.
| | - Timothy D O'Brien
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
| | - Kuldeep S Chattha
- Department of Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA.
| | - Linda J Saif
- Department of Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA.
| |
Collapse
|
17
|
Duberstein KJ, Platt SR, Holmes SP, Dove CR, Howerth EW, Kent M, Stice SL, Hill WD, Hess DC, West FD. Gait analysis in a pre- and post-ischemic stroke biomedical pig model. Physiol Behav 2013; 125:8-16. [PMID: 24286894 DOI: 10.1016/j.physbeh.2013.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/13/2013] [Indexed: 11/18/2022]
Abstract
Severity of neural injury including stroke in human patients, as well as recovery from injury, can be assessed through changes in gait patterns of affected individuals. Similar quantification of motor function deficits has been measured in rodent animal models of such injuries. However, due to differences in fundamental structure of human and rodent brains, there is a need to develop a large animal model to facilitate treatment development for neurological conditions. Porcine brain structure is similar to that of humans, and therefore the pig may make a more clinically relevant animal model. The current study was undertaken to determine key gait characteristics in normal biomedical miniature pigs and dynamic changes that occur post-neural injury in a porcine middle cerebral artery (MCA) occlusion ischemic stroke model. Yucatan miniature pigs were trained to walk through a semi-circular track and were recorded with high speed cameras to detect changes in key gait parameters. Analysis of normal pigs showed overall symmetry in hindlimb swing and stance times, forelimb stance time, along with step length, step velocity, and maximum hoof height on both fore and hindlimbs. A subset of pigs were again recorded at 7, 5 and 3 days prior to MCA occlusion and then at 1, 3, 5, 7, 14 and 30 days following surgery. MRI analysis showed that MCA occlusion resulted in significant infarction. Gait analysis indicated that stroke resulted in notable asymmetries in both temporal and spatial variables. Pigs exhibited lower maximum front hoof height on the paretic side, as well as shorter swing time and longer stance time on the paretic hindlimb. These results support that gait analysis of stroke injury is a highly sensitive detection method for changes in gait parameters in pig.
Collapse
Affiliation(s)
- Kylee Jo Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Simon R Platt
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Department of Small Animal and Surgery, University of Georgia, Athens, GA 30602, USA
| | - Shannon P Holmes
- Department of Veterinary Biosciences & Diagnostic Imaging, University of Georgia, Athens, GA 30602, USA
| | - C Robert Dove
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | | | - Marc Kent
- Department of Small Animal and Surgery, University of Georgia, Athens, GA 30602, USA
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - William D Hill
- Department of Neurology, Georgia Regents University, Augusta, GA 30912, USA; Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - David C Hess
- Department of Neurology, Georgia Regents University, Augusta, GA 30912, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
18
|
Lim JH, McCullen SD, Piedrahita JA, Loboa EG, Olby NJ. Alternating current electric fields of varying frequencies: effects on proliferation and differentiation of porcine neural progenitor cells. Cell Reprogram 2013; 15:405-12. [PMID: 23961767 DOI: 10.1089/cell.2013.0001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Application of sinusoidal electric fields (EFs) has been observed to affect cellular processes, including alignment, proliferation, and differentiation. In the present study, we applied low-frequency alternating current (AC) EFs to porcine neural progenitor cells (pNPCs) and investigated the effects on cell patterning, proliferation, and differentiation. pNPCs were grown directly on interdigitated electrodes (IDEs) localizing the EFs to a region accessible visually for fluorescence-based assays. Cultures of pNPCs were exposed to EFs (1 V/cm) of 1 Hz, 10 Hz, and 50 Hz for 3, 7, and 14 days and compared to control cultures. Immunocytochemistry was performed to evaluate the expression of neural markers. pNPCs grew uniformly with no evidence of alignment to the EFs and no change in cell numbers when compared with controls. Nestin expression was shown in all groups at 3 and 7 days, but not at 14 days. NG2 expression was low in all groups. Co-expression of glial fibrillary acidic protein (GFAP) and TUJ1 was significantly higher in the cultures exposed to 10- and 50-Hz EFs than the controls. In summary, sinusoidal AC EFs via IDEs did not alter the alignment and proliferation of pNPCs, but higher frequency stimulation appeared to delay differentiation into mature astrocytes.
Collapse
Affiliation(s)
- Ji-Hey Lim
- 1 Department of Clinical Sciences, North Carolina State University , Raleigh, NC, 27607
| | | | | | | | | |
Collapse
|
19
|
Lee JHT, Jones CF, Okon EB, Anderson L, Tigchelaar S, Kooner P, Godbey T, Chua B, Gray G, Hildebrandt R, Cripton P, Tetzlaff W, Kwon BK. A novel porcine model of traumatic thoracic spinal cord injury. J Neurotrauma 2013; 30:142-59. [PMID: 23316955 DOI: 10.1089/neu.2012.2386] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) researchers have predominately utilized rodents and mice for in vivo SCI modeling and experimentation. From these small animal models have come many insights into the biology of SCI, and a growing number of novel treatments that promote behavioral recovery. It has, however, been difficult to demonstrate the efficacy of such treatments in human clinical trials. A large animal SCI model that is an intermediary between rodent and human SCI may be a valuable translational research resource for pre-clinically evaluating novel therapies, prior to embarking upon lengthy and expensive clinical trials. Here, we describe the development of such a large animal model. A thoracic spinal cord injury at T10/11 was induced in Yucatan miniature pigs (20-25 kg) using a weight drop device. Varying degrees of injury severity were induced by altering the height of the weight drop (5, 10, 20, 30, 40, and 50 cm). Behavioral recovery over 12 weeks was measured using a newly developed Porcine Thoracic Injury Behavior Scale (PTIBS). This scale distinguished locomotor recovery among animals of different injury severities, with strong intra-observer and inter-observer reliability. Histological analysis of the spinal cords 12 weeks post-injury revealed that animals with the more biomechanically severe injuries had less spared white matter and gray matter and less neurofilament immunoreactivity. Additionally, the PTIBS scores correlated strongly with the extent of tissue sparing through the epicenter of injury. This large animal model of SCI may represent a useful intermediary in the testing of novel pharmacological treatments and cell transplantation strategies.
Collapse
Affiliation(s)
- Jae H T Lee
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yang JY, Mumaw JL, Liu Y, Stice SL, West FD. SSEA4-positive pig induced pluripotent stem cells are primed for differentiation into neural cells. Cell Transplant 2012; 22:945-59. [PMID: 23043799 DOI: 10.3727/096368912x657279] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neural cells derived from induced pluripotent stem cells (iPSCs) have the potential for autologous cell therapies in treating patients with severe neurological disorders or injury. However, further study of efficacy and safety are needed in large animal preclinical models that have similar neural anatomy and physiology to humans such as the pig. The pig model for pluripotent stem cell therapy has been made possible for the first time with the development of pig iPSCs (piPSCs) capable of in vitro and in vivo differentiation into tissues of all three germ layers. Still, the question remains if piPSCs are capable of undergoing robust neural differentiation using a system similar to those being used with human iPSCs. In this study, we generated a new line of piPSCs from fibroblast cells that expressed pluripotency markers and were capable of embryoid body differentiation into all three germ layers. piPSCs demonstrated robust neural differentiation forming βIII-TUB/MAP2+ neurons, GFAP+ astrocytes, and O4+ oligodendrocytes and demonstrated strong upregulation of neural cell genes representative of all three major neural lineages of the central nervous system. In the presence of motor neuron signaling factors, piPSC-derived neurons showed expression of transcription factors associated with motor neuron differentiation (HB9 and ISLET1). Our findings demonstrate that SSEA4 expression is required for piPSCs to differentiate into neurons, astrocytes, and oligodendrocytes and furthermore develop specific neuronal subtypes. This indicates that the pigs can fill the need for a powerful model to study autologous neural iPSC therapies in a system similar to humans.
Collapse
Affiliation(s)
- Jeong-Yeh Yang
- Regenerative Bioscience Center, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, GA 30602-2771, USA
| | | | | | | | | |
Collapse
|
21
|
The pig model of chronic paraplegia: A challenge for experimental studies in spinal cord injury. Prog Neurobiol 2012; 97:288-303. [DOI: 10.1016/j.pneurobio.2012.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 01/22/2012] [Accepted: 04/17/2012] [Indexed: 12/27/2022]
|
22
|
Ruff CA, Wilcox JT, Fehlings MG. Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp Neurol 2012; 235:78-90. [DOI: 10.1016/j.expneurol.2011.02.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/02/2011] [Accepted: 02/10/2011] [Indexed: 12/19/2022]
|
23
|
Song C, Zhong GB, Liu ZD, Li W, Ni PW, Qiao ZG. Effective reinnervation of the quadriceps femoris by spinal ventral root cross-anastomosis in rats. Acta Cir Bras 2012; 27:330-7. [DOI: 10.1590/s0102-86502012000500009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/16/2012] [Indexed: 11/21/2022] Open
Abstract
PURPOSE: To study the effective recovery of the quadriceps femoris by spinal ventral root cross-anastomosis in rats. METHODS: End-to-end anastomosis was performed between the left L1 and L3 ventral roots using autogenous nerve graft ,and the right L1 and L3 roots were left intact. In control animals, the left L3 ventral root was cut and shortened, and anastomosis was not performed. Six months postoperatively, the movement of low extremities was detected by electrophysiological examination, hindlimb locomotion and basso, beattie and bresnahan (BBB) scoring at one, three, seven, 14, 21 and 28 days after SCI. Fluorescence retrograde tracing with TRUE BLUE (TB) and HE staining were performed to observe the nerve regeneration. RESULTS: Six months after surgery, the anastomotic nerve was smooth and not atrophic. The amplitudes of action potential were 7.63±1.86 mV and 6.0±1.92 mV respectively before and after the spinal cord hemisection. The contraction of left quadriceps femoris was induced by a single stimulation of the anastomotic nerve. The locomotion of left hindlimb was partially restored after spinal cord hemisection while creeping and climbing. In addition, there was significant difference in the BBB score at one, three and seven days after SCI. TB retrograde tracing and neurophysiologic observation indicated efficient reinnervation of the quadriceps femoris. CONCLUSION: The cross-anastomosis between spinal ventral root can partially reconstruct the function of quadriceps femoris following SCI and may have clinical implication for the treatment of human SCI.
Collapse
Affiliation(s)
| | | | | | - Wei Li
- Shanghai Jiao Tong University
| | | | | |
Collapse
|
24
|
Navarro R, Juhas S, Keshavarzi S, Juhasova J, Motlik J, Johe K, Marsala S, Scadeng M, Lazar P, Tomori Z, Schulteis G, Beattie M, Ciacci JD, Marsala M. Chronic spinal compression model in minipigs: a systematic behavioral, qualitative, and quantitative neuropathological study. J Neurotrauma 2012; 29:499-513. [PMID: 22029501 DOI: 10.1089/neu.2011.2076] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The goal of the present study was to develop a porcine spinal cord injury (SCI) model, and to describe the neurological outcome and characterize the corresponding quantitative and qualitative histological changes at 4-9 months after injury. Adult Gottingen-Minnesota minipigs were anesthetized and placed in a spine immobilization frame. The exposed T12 spinal segment was compressed in a dorso-ventral direction using a 5-mm-diameter circular bar with a progressively increasing peak force (1.5, 2.0, or 2.5 kg) at a velocity of 3 cm/sec. During recovery, motor and sensory function were periodically monitored. After survival, the animals were perfusion fixed and the extent of local SCI was analyzed by (1) post-mortem MRI analysis of dissected spinal cords, (2) qualitative and quantitative analysis of axonal survival at the epicenter of injury, and (3) defining the presence of local inflammatory changes, astrocytosis, and schwannosis. Following 2.5-kg spinal cord compression the animals demonstrated a near complete loss of motor and sensory function with no recovery over the next 4-9 months. Those that underwent spinal cord compression with 2 kg force developed an incomplete injury with progressive partial neurological recovery characterized by a restricted ability to stand and walk. Animals injured with a spinal compression force of 1.5 kg showed near normal ambulation 10 days after injury. In fully paralyzed animals (2.5 kg), MRI analysis demonstrated a loss of spinal white matter integrity and extensive septal cavitations. A significant correlation between the magnitude of loss of small and medium-sized myelinated axons in the ventral funiculus and neurological deficits was identified. These data, demonstrating stable neurological deficits in severely injured animals, similarities of spinal pathology to humans, and relatively good post-injury tolerance of this strain of minipigs to spinal trauma, suggest that this model can successfully be used to study therapeutic interventions targeting both acute and chronic stages of SCI.
Collapse
Affiliation(s)
- Roman Navarro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), San Diego, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Reier PJ, Lane MA, Hall ED, Teng YD, Howland DR. Translational spinal cord injury research: preclinical guidelines and challenges. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:411-33. [PMID: 23098728 PMCID: PMC4288927 DOI: 10.1016/b978-0-444-52137-8.00026-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Advances in the neurobiology of spinal cord injury (SCI) have prompted increasing attention to opportunities for moving experimental strategies towards clinical applications. Preclinical studies are the centerpiece of the translational process. A major challenge is to establish strategies for achieving optimal translational progression while minimizing potential repetition of previous disappointments associated with clinical trials. This chapter reviews and expands upon views pertaining to preclinical design reported in recently published opinion surveys. Subsequent discussion addresses other preclinical considerations more specifically related to current and potentially imminent cellular and pharmacological approaches to acute/subacute and chronic SCI. Lastly, a retrospective and prospective analysis examines how guidelines currently under discussion relate to select examples of past, current, and future clinical translations. Although achieving definition of the "perfect" preclinical scenario is difficult to envision, this review identifies therapeutic robustness and independent replication of promising experimental findings as absolutely critical prerequisites for clinical translation. Unfortunately, neither has been fully embraced thus far. Accordingly, this review challenges the notion "everything works in animals and nothing in humans", since more rigor must first be incorporated into the bench-to-bedside translational process by all concerned, whether in academia, clinical medicine, or corporate circles.
Collapse
Affiliation(s)
- Paul J Reier
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | | | | | | |
Collapse
|
26
|
Khatri M, Saif YM. Epithelial cells derived from swine bone marrow express stem cell markers and support influenza virus replication in vitro. PLoS One 2011; 6:e29567. [PMID: 22216319 PMCID: PMC3245290 DOI: 10.1371/journal.pone.0029567] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/30/2011] [Indexed: 01/25/2023] Open
Abstract
The bone marrow contains heterogeneous population of cells that are involved in the regeneration and repair of diseased organs, including the lungs. In this study, we isolated and characterized progenitor epithelial cells from the bone marrow of 4- to 5-week old germ-free pigs. Microscopically, the cultured cells showed epithelial-like morphology. Phenotypically, these cells expressed the stem cell markers octamer-binding transcription factor (Oct4) and stage-specific embryonic antigen-1 (SSEA-1), the alveolar stem cell marker Clara cell secretory protein (Ccsp), and the epithelial cell markers pan-cytokeratin (Pan-K), cytokeratin-18 (K-18), and occludin. When cultured in epithelial cell growth medium, the progenitor epithelial cells expressed type I and type II pneumocyte markers. Next, we examined the susceptibility of these cells to influenza virus. Progenitor epithelial cells expressed sialic acid receptors utilized by avian and mammalian influenza viruses and were targets for influenza virus replication. Additionally, differentiated type II but not type I pneumocytes supported the replication of influenza virus. Our data indicate that we have identified a unique population of progenitor epithelial cells in the bone marrow that might have airway reconstitution potential and may be a useful model for cell-based therapies for infectious and non-infectious lung diseases.
Collapse
Affiliation(s)
- Mahesh Khatri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA.
| | | |
Collapse
|
27
|
Abstract
More than 1 million people in the United States live with a spinal cord injury (SCI). Despite medical advances, many patients with SCIs still experience substantial neurological disability, with loss of motor, sensory, and autonomic function. Cell therapy is ideally suited to address the multifactorial nature of the secondary events following SCI. Remarkable advances in our understanding of the pathophysiology of SCI, structural and functional magnetic resonance imaging, image-guided micro-neurosurgical techniques, and transplantable cell biology have enabled the use of cell-based regenerative techniques in the clinic. It is important to note that there are more than a dozen recently completed, ongoing, or recruiting cell therapy clinical trials for SCI that reflect the views of many key stakeholders. The field of regenerative neuroscience has reached a stage in which the clinical trials are scientifically and ethically justified. Although experimental models and analysis methods and techniques continue to evolve, no model will completely replicate the human condition. It is recognized that more work with cervical models of contusive/compressive SCI are required in parallel with clinical trials. It is also important that the clinical translation of advances made through well-established and validated experimental approaches in animal models move forward to meet the compelling needs of individuals with SCI and to advance the field of regenerative neuroscience. However, it is imperative that such efforts at translation be done in the most rigorous and informed fashion to determine safety and possible efficacy, and to provide key information to clinicians and basic scientists, which will allow improvements in regenerative techniques and the validation and refinement of existing preclinical animal models and research approaches. The field of regenerative neuroscience should not be stalled at the animal model stage, but instead the clinical trials need to be focused, safe, and ethical, backed up by a robust, translationally relevant preclinical research strategy.
Collapse
Affiliation(s)
- Michael G. Fehlings
- University Health Network, Toronto Western Hospital, Toronto, ON M5T 2S8 Canada
| | - Reaz Vawda
- University Health Network, Toronto Western Hospital, Toronto, ON M5T 2S8 Canada
| |
Collapse
|