1
|
Yang J, Guo S, Pan B, Qazi IH, Qin J, Zang S, Han H, Meng Q, Zhou G. Melatonin promotes in vitro maturation of vitrified-warmed mouse GV oocytes potentially by modulating MAD2 protein expression of SAC component through MTRs. Cryobiology 2021; 102:82-91. [PMID: 34297995 DOI: 10.1016/j.cryobiol.2021.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/07/2021] [Accepted: 07/17/2021] [Indexed: 12/13/2022]
Abstract
Previous studies have shown that melatonin (MT) can ameliorate vitrification-inflicted damage in mouse germinal vesicle (GV) oocytes, however, the key mechanistic basis of this improvement still remains poorly understood. This study was conducted to investigate whether MT can improve in vitro developmental potential of vitrified-warmed GV oocytes through its receptors. The fresh oocytes were randomly divided into four groups: untreated (control group, F), vitrified by open-pulled straw method (vitrification group, V), vitrification group with 100 nmol/L MT supplementation (vitrification + MT group, VM), and with 100 nmol/L MT plus 100 nmol/L luzindole administration (vitrification + MT + luzindole group, VML) or with 50 nmol/L ramelteon addition (vitrification + ramelteon group; VR). After warming, oocytes were cultured in vitro, and MT receptors (MTRs), MAD2 (mitotic arrest deficient 2), Securin and CyclinB1 protein levels and spindle morphology were evaluated. The ratio of oocytes developed to the metaphase I (MI) and metaphase II (MII) stages was also assessed. The results showed that after vitrification-warming, the in vitro maturation rate of GV oocytes was significantly lower compared to the control (F) group. Vitrification also significantly impaired the spindle morphology, decreased the protein level of MTRs and Securin, and decreased MAD2 levels in MI oocytes. However, when MT or ramelteon (MTRs agonist) were added (group wise) to warming and maturation media, the maturation rate of GV oocytes was significantly increased, the normal proportion of the spindle morphology increased, and the expression level of MAD2 increased in their resulting MI oocytes compared to the vitrification group. However, following addition of both MT and ramelteon, the maturation rate of GV oocyte showed no significant difference between VML and vitrification groups. The spindle morphology and MAD2 levels in MI oocytes were comparable to the vitrification group but differed significantly from the VM group. Taken together, finding of the present study shows that MT (100 nmol/L) can ameliorate the in vitro maturation of vitrified-warmed mouse GV oocytes, potentially by improving the spindle morphology, modulating MAD2 protein level and promoting the development of MI stage oocytes through MTRs.
Collapse
Affiliation(s)
- Jinyu Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shichao Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, 67210, Sindh, Pakistan.
| | - Jianpeng Qin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shengqin Zang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Hongbing Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Qingyong Meng
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, 100193, China.
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
De Coster T, Velez DA, Van Soom A, Woelders H, Smits K. Cryopreservation of equine oocytes: looking into the crystal ball. Reprod Fertil Dev 2021; 32:453-467. [PMID: 32172776 DOI: 10.1071/rd19229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022] Open
Abstract
Invitro embryo production has evolved rapidly in the horse over the past decade, but blastocyst rates from vitrified equine oocytes remain quite poor and further research is needed to warrant application. Oocyte vitrification is affected by several technical and biological factors. In the horse, short exposure of immature oocytes to the combination of permeating and non-permeating cryoprotective agents has been associated with the best results so far. High cooling and warming rates are also crucial and can be obtained by using minimal volumes and open cryodevices. Vitrification of invivo-matured oocytes has yielded better results, but is less practical. The presence of the corona radiata seems to partially protect those factors that are necessary for the construction of the normal spindle and for chromosome alignment, but multiple layers of cumulus cells may impair permeation of cryoprotective agents. In addition to the spindle, the oolemma and mitochondria are also particularly sensitive to vitrification damage, which should be minimised in future vitrification procedures. This review presents promising protocols and novel strategies in equine oocyte vitrification, with a focus on blastocyst development and foal production as most reliable outcome parameters.
Collapse
Affiliation(s)
- Tine De Coster
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; and Corresponding authors. ;
| | - Daniel Angel Velez
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; and Corresponding authors. ;
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Henri Woelders
- Wageningen Livestock Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Katrien Smits
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
3
|
Caffeine and oocyte vitrification: Sheep as an animal model. Int J Vet Sci Med 2019; 6:S41-S48. [PMID: 30761320 PMCID: PMC6161861 DOI: 10.1016/j.ijvsm.2018.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/20/2018] [Accepted: 01/20/2018] [Indexed: 11/21/2022] Open
Abstract
Oocyte cryopreservation is valuable way of preserving the female germ line. Vitrification of immature ovine oocytes decreased the levels of both maturation promoting factor (MPF) and mitogen-activated protein kinase (MAPK) in metaphase II (MII) oocytes after IVM. Our aims were 1) to evaluate the effects of vitrification of ovine GV-oocytes on spindle assembly, MPF/MAP kinases activities, and preimplantation development following IVM and IVF, 2) to elucidate the impact of caffeine supplementation during IVM on the quality and development of vitrified/warmed ovine GV-oocytes. Cumulus-oocyte complexes (COCs) from mature ewes were divided into vitrified, toxicity and control groups. Oocytes from each group were matured in vitro for 18 h in caffeine free IVM medium and denuded oocytes were incubated in maturation medium supplemented with 10 mM (+) or without (−) caffeine for another 6 h. At 24 h.p.m., oocytes were evaluated for spindle configuration, MPF/MAP kinases activities or fertilized and cultured in vitro for 7 days. Caffeine supplementation did not significantly affect the percentages of oocytes with normal spindle assembly in all the groups. Caffeine supplementation during IVM did not increase the activities of both kinases in vitrified groups. Cleavage and blastocyst development were significantly lower in vitrified groups than in control. Caffeine supplementation during the last 6 h of IVM did not significantly improve the cleavage and blastocyst rates in vitrified group. In conclusion, caffeine treatment during in vitro maturation has no positive impact on the quality and development of vitrified/warmed ovine GV-oocytes after IVM/IVF and embryo culture.
Collapse
|
4
|
Sanaei B, Movaghar B, Rezazadeh Valojerdi M, Ebrahimi B, Bazrgar M, Hajian M, Nasr-Esfahani MH. Developmental competence of in vitro matured ovine oocytes vitrified in solutions with different concentrations of trehalose. Reprod Domest Anim 2018; 53:1159-1167. [PMID: 29938846 DOI: 10.1111/rda.13221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 01/30/2023]
Abstract
This study aimed to determine the optimum concentration of trehalose in solutions used for vitrification of in vitro matured (IVM) ovine oocytes. IVM oocytes were randomly divided into four experimental (vitrified) and one control (fresh) groups. Experimental groups were treated with different concentrations (0.0, 0.25, 0.5 and 1.0 M) of trehalose. After warming, some viable oocytes were exposed to 0.25% pronase to test zona pellucida hardening, whereas the others were fertilized and cultured in vitro for 8 days to evaluate their developmental competence. Blastocysts quality was assessed by differential staining and TUNEL test. Survival and developmental rates of oocytes vitrified in the presence of 0.5 M trehalose were significantly higher than those of the other vitrified groups. Furthermore, there was a significant difference between fresh and vitrified groups in total blastocyst rate. Analysis of blastocysts quality also revealed a significant difference between the group treated with 0.5 M trehalose and other groups in terms of apoptotic index. Furthermore,zona pellucida digestion time period was longer in trehalose-free (0.0 M) group compared to other groups. In conclusion, we found that IVM ovine oocytes vitrified in solutions containing 0.5 M trehalose are fertilization-competent and are able to produce good-quality blastocysts with an apoptotic index comparable to that of the fresh oocytes. Therefore, 0.5 M may be considered the optimum concentration of trehalose to be used in solutions prepared for vitrification of oocytes.
Collapse
Affiliation(s)
- Batool Sanaei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Bahar Movaghar
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Masood Bazrgar
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehdi Hajian
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Tehran, Iran
| | - Mohammad H Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Tehran, Iran
| |
Collapse
|
5
|
Fathi M, Moawad AR, Badr MR. Production of blastocysts following in vitro maturation and fertilization of dromedary camel oocytes vitrified at the germinal vesicle stage. PLoS One 2018; 13:e0194602. [PMID: 29543888 PMCID: PMC5854426 DOI: 10.1371/journal.pone.0194602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/14/2018] [Indexed: 11/19/2022] Open
Abstract
Cryopreservation of oocytes would serve as an alternative to overcome the limited availability of dromedary camel oocytes and facilitate improvements in IVP techniques in this species. Our goal was to develop a protocol for the vitrification of camel oocytes at the germinal vesicle (GV) stage using different cryoprotectant combinations: 20% EG and 20% DMSO (VS1), 25% EG plus 25% DMSO (VS2) or 25% EG and 25% glycerol (VS3) and various cryo-carriers; straws or open pulled-straw (OPS) or solid surface vitrification (SSV); and Cryotop. Viable oocytes were cultured in vitro for 30 h. Matured oocytes were fertilized with epididymal spermatozoa and then cultured in vitro in modified KSOMaa medium for 7 days. Survival and nuclear maturation rates were significantly lower (P ≤ 0.05) in oocytes exposed to VS3 (44.8% and 34.0%, respectively) than those exposed to VS1 (68.2% and 48.0%, respectively) and VS2 (79.3% and 56.9%, respectively). Although recovery rates were significantly lower (P ≤ 0.05) in SSV and Cryotop vitrified oocytes (66.9% to 71.1%) than those vitrified by straws with VS1 or VS2 solutions (86.3% to 91.0%), survival rates were higher in the SSV and Cryotop groups (90.7% to 94.8%) than in the straw and OPS groups (68.2% to 86.5%). Among vitrified groups, maturation and fertilization rates were the highest in the Cryotop-VS2 group (51.8% and 39.2%, respectively). These values were comparable to those seen in the controls (59.2% and 44.6%, respectively). Cleavage (22.5% to 27.9%), morula (13.2% to 14.5%), and blastocyst (6.4% to 8.5%) rates were significantly higher (P ≤ 0.05) in SSV and Cryotop groups than in straws. No significant differences were observed in these parameters between the Cryotop and control groups. We report for the first time that dromedary oocytes vitrified at the GV-stage have the ability to be matured, fertilized and subsequently develop in vitro to produce blastocysts at frequencies comparable to those obtained using fresh oocytes.
Collapse
Affiliation(s)
- Mohamed Fathi
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adel R. Moawad
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- * E-mail:
| | - Magdy R. Badr
- Department of Artificial Insemination and Embryo Transfer, Animal Reproduction Research Institute, Agriculture Research Centre, Giza, Egypt
| |
Collapse
|
6
|
Khan S, Tali M, Khan A, Bhat S, Ashraf A, Bhat MH, Khan F, Shah RA. Comparison of efficiency of in vitro cloned sheep embryo production by conventional somatic cell nuclear transfer and handmade cloning technique. Reprod Domest Anim 2018; 53:512-518. [DOI: 10.1111/rda.13138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/13/2017] [Indexed: 11/28/2022]
Affiliation(s)
- S Khan
- Centre of Animal Biotechnology; Faculty of Veterinary Sciences and Animal Husbandry; Sher-e- Kashmir University of Agricultural Sciences and Technology; Srinagar Jammu and Kashmir India
| | - M Tali
- Centre of Animal Biotechnology; Faculty of Veterinary Sciences and Animal Husbandry; Sher-e- Kashmir University of Agricultural Sciences and Technology; Srinagar Jammu and Kashmir India
| | - A Khan
- Division of Animal Nutrition; Indian Veterinary Research Institute; Izzatnagar Bareilly Uttar Pradesh India
| | - S Bhat
- Centre of Animal Biotechnology; Faculty of Veterinary Sciences and Animal Husbandry; Sher-e- Kashmir University of Agricultural Sciences and Technology; Srinagar Jammu and Kashmir India
| | - A Ashraf
- Division of Veterinary Parasitology; Faculty of Veterinary Sciences and Animal Husbandry; Sher-e- Kashmir University of Agricultural Sciences and Technology; Srinagar Jammu and Kashmir India
| | - MH Bhat
- Centre of Animal Biotechnology; Faculty of Veterinary Sciences and Animal Husbandry; Sher-e- Kashmir University of Agricultural Sciences and Technology; Srinagar Jammu and Kashmir India
| | - F Khan
- Centre of Animal Biotechnology; Faculty of Veterinary Sciences and Animal Husbandry; Sher-e- Kashmir University of Agricultural Sciences and Technology; Srinagar Jammu and Kashmir India
| | - RA Shah
- Centre of Animal Biotechnology; Faculty of Veterinary Sciences and Animal Husbandry; Sher-e- Kashmir University of Agricultural Sciences and Technology; Srinagar Jammu and Kashmir India
| |
Collapse
|
7
|
Wei X, Sijie Y, Weibin Z, Qing X, Jie Z, Xiangdong Z. Cytoskeleton Genes Expression and Survival Rate Comparison Between Immature and Mature Yak Oocyte After OPS Vitrification. Anim Biotechnol 2017; 29:247-251. [DOI: 10.1080/10495398.2017.1369429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xia Wei
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Ye Sijie
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Zeng Weibin
- College of Animal Sciences and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Xu Qing
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Zheng Jie
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Zi Xiangdong
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| |
Collapse
|
8
|
Beneficial effects of glutathione supplementation during vitrification of mouse oocytes at the germinal vesicle stage on their preimplantation development following maturation and fertilization in vitro. Cryobiology 2017; 76:98-103. [DOI: 10.1016/j.cryobiol.2017.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 11/20/2022]
|
9
|
Moawad AR, Xu B, Tan SL, Taketo T. l-carnitine supplementation during vitrification of mouse germinal vesicle stage-oocytes and their subsequent in vitro maturation improves meiotic spindle configuration and mitochondrial distribution in metaphase II oocytes. Hum Reprod 2014; 29:2256-68. [PMID: 25113843 DOI: 10.1093/humrep/deu201] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
STUDY QUESTION How does l-carnitine (LC) supplementation during vitrification and in vitro maturation (IVM) of germinal vesicle stage (GV)-oocytes improve the developmental competence of the resultant metaphase II (MII) oocytes? SUMMARY ANSWER LC supplementation during both vitrification of GV-oocytes and their subsequent IVM improved nuclear maturation as well as meiotic spindle assembly and mitochondrial distribution in MII oocytes. WHAT IS KNOWN ALREADY Vitrification of GV-oocytes results in a lower success rate of blastocyst development compared with non-vitrified oocytes. LC supplementation during both vitrification and IVM of mouse GV-oocytes significantly improves embryonic development after IVF. STUDY DESIGN, SIZE, DURATION GV-oocytes were collected from (B6.DBA)F1 and B6 mouse strains and subjected to vitrification and warming with or without 3.72 mM LC supplementation. After IVM with or without LC supplementation, the rate of nuclear maturation and the quality of MII oocytes were evaluated. At least 20 oocytes/group were examined, and each experiment was repeated at least three times. All experiments were conducted during 2013-2014. PARTICIPANTS/MATERIALS, SETTING, METHODS Extrusion of the first polar body in IVM oocytes was observed as an indication of nuclear maturation. Spindle assembly and chromosomal alignment were examined by immunostaining of α-tubulin and nuclear staining with 4,6-diamidino-2-phenylindole (DAPI). Mitochondrial distribution and oxidative activity were measured by staining with Mitotracker Green Fluorescence Mitochondria (Mitotracker Green FM) and chloromethyltetramethylrosamine (Mitotracker Orange CMTMRos), respectively. ATP levels were determined by using the Bioluminescent Somatic Cell Assay Kit. MAIN RESULTS AND THE ROLE OF CHANCE LC supplementation during both vitrification and IVM of GV-oocytes significantly increased the proportions of oocytes with normal MII spindles to the levels comparable with those of non-vitrified oocytes in both mouse strains. While vitrification of GV-oocytes lowered the proportions of MII oocytes with peripherally concentrated mitochondrial distribution compared with non-vitrified oocytes, LC supplementation significantly increased the proportion of such oocytes in the (B6.DBA)F1 strain. LC supplementation decreased the proportion of oocytes with mitochondrial aggregates in both vitrified and non-vitrified oocytes in the B6 strain. The oxidative activity of mitochondria was mildly decreased by vitrification and drastically increased by LC supplementation irrespective of vitrification in both mouse strains. No change was found in ATP levels irrespective of vitrification or LC supplementation. Results were considered to be statistically significant at P < 0.05 by either χ(2)- or t-test. LIMITATIONS, REASONS FOR CAUTION It remains to be tested whether beneficial effect of LC supplementation during vitrification and IVM of GV-oocytes leads to fetal development and birth of healthy offspring after embryo transfer to surrogate females. WIDER IMPLICATIONS OF THE FINDINGS This protocol has the potential to improve the quality of vitrified human oocytes and embryos during assisted reproduction treatment. STUDY FUNDING/COMPETING INTEREST Partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant and Mitacs Elevate Postdoctoral Fellowship, Canada.
Collapse
Affiliation(s)
- Adel R Moawad
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada Department of Surgery, McGill University, Montreal, Quebec, Canada OriginElle Fertility Clinic and Women's Health Centre, Montreal, Quebec, Canada Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Baozeng Xu
- Department of Surgery, McGill University, Montreal, Quebec, Canada OriginElle Fertility Clinic and Women's Health Centre, Montreal, Quebec, Canada
| | - Seang Lin Tan
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada OriginElle Fertility Clinic and Women's Health Centre, Montreal, Quebec, Canada
| | - Teruko Taketo
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada Department of Surgery, McGill University, Montreal, Quebec, Canada OriginElle Fertility Clinic and Women's Health Centre, Montreal, Quebec, Canada Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Wasik AM, Grabarek J, Pantovic A, Cieślar-Pobuda A, Asgari HR, Bundgaard-Nielsen C, Rafat M, Dixon IMC, Ghavami S, Łos MJ. Reprogramming and carcinogenesis--parallels and distinctions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:167-203. [PMID: 24411172 DOI: 10.1016/b978-0-12-800097-7.00005-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rapid progress made in various areas of regenerative medicine in recent years occurred both at the cellular level, with the Nobel prize-winning discovery of reprogramming (generation of induced pluripotent stem (iPS) cells) and also at the biomaterial level. The use of four transcription factors, Oct3/4, Sox2, c-Myc, and Klf4 (called commonly "Yamanaka factors") for the conversion of differentiated cells, back to the pluripotent/embryonic stage, has opened virtually endless and ethically acceptable source of stem cells for medical use. Various types of stem cells are becoming increasingly popular as starting components for the development of replacement tissues, or artificial organs. Interestingly, many of the transcription factors, key to the maintenance of stemness phenotype in various cells, are also overexpressed in cancer (stem) cells, and some of them may find the use as prognostic factors. In this review, we describe various methods of iPS creation, followed by overview of factors known to interfere with the efficiency of reprogramming. Next, we discuss similarities between cancer stem cells and various stem cell types. Final paragraphs are dedicated to interaction of biomaterials with tissues, various adverse reactions generated as a result of such interactions, and measures available, that allow for mitigation of such negative effects.
Collapse
Affiliation(s)
- Agata M Wasik
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Jerzy Grabarek
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Aleksandar Pantovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, and Clinic of Neurology, Military Medical Academy, Belgrade, Serbia
| | - Artur Cieślar-Pobuda
- Department of Clinical and Experimental Medicine (IKE), Division of Cell Biology, and Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden; Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | | | - Caspar Bundgaard-Nielsen
- Department of Clinical and Experimental Medicine (IKE), Division of Cell Biology, and Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden; Laboratory for Stem Cell Research, Aalborg University, Aalborg, Denmark
| | - Mehrdad Rafat
- Department of Clinical and Experimental Medicine (IKE), Division of Cell Biology, and Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden; Department of Biomedical Engineering (IMT), Linköping University, Linköping, Sweden
| | - Ian M C Dixon
- Department of Physiology, St. Boniface Research Centre, and Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Canada
| | - Saeid Ghavami
- Department of Physiology, St. Boniface Research Centre, and Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Canada
| | - Marek J Łos
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland; Department of Clinical and Experimental Medicine (IKE), Division of Cell Biology, and Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden; BioApplications Enterprises, Winnipeg, Manitoba, Canada.
| |
Collapse
|
11
|
Open pulled straw vitrification of in vitro matured sheep oocytes using different cryoprotectants. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2012.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Srirattana K, Sripunya N, Sangmalee A, Imsoonthornruksa S, Liang Y, Ketudat-Cairns M, Parnpai R. Developmental potential of vitrified goat oocytes following somatic cell nuclear transfer and parthenogenetic activation. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2012.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Moawad AR, Tan SL, Xu B, Chen HY, Taketo T. l-Carnitine Supplementation During Vitrification of Mouse Oocytes at the Germinal Vesicle Stage Improves Preimplantation Development Following Maturation and Fertilization In Vitro. Biol Reprod 2013; 88:104. [DOI: 10.1095/biolreprod.112.107433] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
14
|
Moawad AR, Zhu J, Choi I, Amarnath D, Chen W, Campbell KHS. Production of good-quality blastocyst embryos following IVF of ovine oocytes vitrified at the germinal vesicle stage using a cryoloop. Reprod Fertil Dev 2013; 25:1204-15. [DOI: 10.1071/rd12215] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/30/2012] [Indexed: 11/23/2022] Open
Abstract
The cryopreservation of immature oocytes at the germinal vesicle (GV) stage would create an easily accessible, non-seasonal source of female gametes for research and reproduction. The present study investigated the ability of ovine oocytes vitrified at the GV stage using a cryoloop to be subsequently matured, fertilised and cultured in vitro to blastocyst-stage embryos. Selected cumulus–oocyte complexes obtained from mature ewes at the time of death were randomly divided into vitrified, toxicity and control groups. Following vitrification and warming, viable oocytes were matured in vitro for 24 h. Matured oocytes were either evaluated for nuclear maturation, spindle and chromosome configuration or fertilised and cultured in vitro for 7 days. No significant differences were observed in the frequencies of IVM (oocytes at the MII stage), oocytes with normal spindle and chromatin configuration and fertilised oocytes among the three groups. Cleavage at 24 and 48 h post insemination was significantly decreased (P < 0.01) in vitrified oocytes. No significant differences were observed in the proportion of blastocyst development between vitrified and control groups (29.4% v. 45.1%, respectively). No significant differences were observed in total cell numbers, the number of apoptotic nuclei or the proportion of diploid embryos among the three groups. In conclusion, we report for the first time that ovine oocytes vitrified at the GV stage using a cryoloop have the ability to be matured, fertilised and subsequently developed in vitro to produce good-quality blastocyst embryos at frequencies comparable to those obtained using fresh oocytes.
Collapse
|
15
|
Moawad AR, Fisher P, Zhu J, Choi I, Polgar Z, Dinnyes A, Campbell KH. In vitro fertilization of ovine oocytes vitrified by solid surface vitrification at germinal vesicle stage. Cryobiology 2012; 65:139-44. [DOI: 10.1016/j.cryobiol.2012.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/23/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
|