1
|
Pun SH, O’Neill KM, Edgar KS, Gill EK, Moez A, Naderi-Meshkin H, Malla SB, Hookham MB, Alsaggaf M, Madishetti VV, Botezatu B, King W, Brunssen C, Morawietz H, Dunne PD, Brazil DP, Medina RJ, Watson CJ, Grieve DJ. PLAC8-Mediated Activation of NOX4 Signalling Restores Angiogenic Function of Endothelial Colony-Forming Cells in Experimental Hypoxia. Cells 2023; 12:2220. [PMID: 37759443 PMCID: PMC10526321 DOI: 10.3390/cells12182220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Ischaemic cardiovascular disease is associated with tissue hypoxia as a significant determinant of angiogenic dysfunction and adverse remodelling. While cord blood-derived endothelial colony-forming cells (CB-ECFCs) hold clear therapeutic potential due to their enhanced angiogenic and proliferative capacity, their impaired functionality within the disease microenvironment represents a major barrier to clinical translation. The aim of this study was to define the specific contribution of NOX4 NADPH oxidase, which we previously reported as a key CB-ECFC regulator, to hypoxia-induced dysfunction and its potential as a therapeutic target. CB-ECFCs exposed to experimental hypoxia demonstrated downregulation of NOX4-mediated reactive oxygen species (ROS) signalling linked with a reduced tube formation, which was partially restored by NOX4 plasmid overexpression. siRNA knockdown of placenta-specific 8 (PLAC8), identified by microarray analysis as an upstream regulator of NOX4 in hypoxic versus normoxic CB-ECFCs, enhanced tube formation, NOX4 expression and hydrogen peroxide generation, and induced several key transcription factors associated with downstream Nrf2 signalling. Taken together, these findings indicated that activation of the PLAC8-NOX4 signalling axis improved CB-ECFC angiogenic functions in experimental hypoxia, highlighting this pathway as a potential target for protecting therapeutic cells against the ischaemic cardiovascular disease microenvironment.
Collapse
Affiliation(s)
- Shun Hay Pun
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Karla M. O’Neill
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Kevin S. Edgar
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Eleanor K. Gill
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Arya Moez
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Hojjat Naderi-Meshkin
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Sudhir B. Malla
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK; (S.B.M.); (P.D.D.)
| | - Michelle B. Hookham
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Mohammed Alsaggaf
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Vinuthna Vani Madishetti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Bianca Botezatu
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - William King
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, TUD Dresden University of Technology, 01307 Dresden, Germany; (C.B.); (H.M.)
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, TUD Dresden University of Technology, 01307 Dresden, Germany; (C.B.); (H.M.)
| | - Philip D. Dunne
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK; (S.B.M.); (P.D.D.)
| | - Derek P. Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Reinhold J. Medina
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - Chris J. Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| | - David J. Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7AE, UK; (S.H.P.); (K.M.O.); (K.S.E.); (E.K.G.); (A.M.); (H.N.-M.); (M.B.H.); (M.A.); (V.V.M.); (B.B.); (W.K.); (D.P.B.); (R.J.M.); (C.J.W.)
| |
Collapse
|
2
|
Khan S, Jamal MA, Khan IM, Ullah I, Jabbar A, Khan NM, Liu Y. Factors affecting superovulation induction in goats ( Capra hericus): An analysis of various approaches. Front Vet Sci 2023; 10:1152103. [PMID: 37035816 PMCID: PMC10079885 DOI: 10.3389/fvets.2023.1152103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/24/2023] [Indexed: 04/11/2023] Open
Abstract
Goats are generally called a "poor man's cow" because they not only provide meat and milk but also other assistance to their owners, including skins for leather production and their waste, which can be used as compost for fertilizer. Multiple ovulation and embryo transfer (MOET) is an important process in embryo biotechnology, as it increases the contribution of superior female goats to breeding operations. The field of assisted reproductive biotechnologies has seen notable progress. However, unlike in cattle, the standard use of superovulation and other reproductive biotechnologies has not been widely implemented for goats. Multiple intrinsic and extrinsic factors can alter the superovulatory response, significantly restricting the practicability of MOET technology. The use of techniques to induce superovulation is a crucial step in embryo transfer (ET), as it accelerates the propagation of animals with superior genetics for desirable traits. Furthermore, the conventional superovulation techniques based on numerous injections are not appropriate for animals and are labor-intensive as well as expensive. Different approaches and alternatives have been applied to obtain the maximum ovarian response, including immunization against inhibin and the day-0 protocol for the synchronization of the first follicular wave. While there are several studies available in the literature on superovulation in cattle, research on simplified superovulation in goats is limited; only a few studies have been conducted on this topic. This review describes the various treatments with gonadotropin that are used for inducing superovulation in various dairy goat breeds worldwide. The outcomes of these treatments, in terms of ovulation rate and recovery of transferrable embryos, are also discussed. Furthermore, this review also covers the recovery of oocytes through repeated superovulation from the same female goat that is used for somatic cell nuclear transfer (SCNT).
Collapse
Affiliation(s)
- Samiullah Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
- The Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Institute of Entomology, Guizhou University, Guiyang, China
| | | | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Irfan Ullah
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Abdul Jabbar
- Faculty of Veterinary and Animal Sciences, University of Poonch, Rawalakot, Pakistan
| | - Nazir Muhammad Khan
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| |
Collapse
|
3
|
Reiter RJ, Sharma R, Romero A, Manucha W, Tan DX, Zuccari DAPDC, Chuffa LGDA. Aging-Related Ovarian Failure and Infertility: Melatonin to the Rescue. Antioxidants (Basel) 2023; 12:antiox12030695. [PMID: 36978942 PMCID: PMC10045124 DOI: 10.3390/antiox12030695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Aging has a major detrimental effect on the optimal function of the ovary with changes in this organ preceding the age-related deterioration in other tissues, with the middle-aged shutdown leading to infertility. Reduced fertility and consequent inability to conceive by women in present-day societies who choose to have children later in life leads to increased frustration. Melatonin is known to have anti-aging properties related to its antioxidant and anti-inflammatory actions. Its higher follicular fluid levels relative to blood concentrations and its likely synthesis in the oocyte, granulosa, and luteal cells suggest that it is optimally positioned to interfere with age-associated deterioration of the ovary. Additionally, the end of the female reproductive span coincides with a significant reduction in endogenous melatonin levels. Thus, the aims are to review the literature indicating melatonin production in mitochondria of oocytes, granulosa cells, and luteal cells, identify the multiple processes underlying changes in the ovary, especially late in the cessation of the reproductive life span, summarize the physiological and molecular actions of melatonin in the maintenance of normal ovaries and in the aging ovaries, and integrate the acquired information into an explanation for considering melatonin in the treatment of age-related infertility. Use of supplemental melatonin may help preserve fertility later in life and alleviate frustration in women delaying childbearing age, reduce the necessity of in vitro fertilization–embryo transfer (IVF-ET) procedures, and help solve the progressively increasing problem of non-aging-related infertility in women throughout their reproductive life span. While additional research is needed to fully understand the effects of melatonin supplementation on potentially enhancing fertility, studies published to date suggest it may be a promising option for those struggling with infertility.
Collapse
Affiliation(s)
- Russel J. Reiter
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
- Correspondence: (R.J.R.); (A.R.); Tel.: +1-210-567-3859 (R.J.R.); +34-91-3943970 (A.R.)
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (R.J.R.); (A.R.); Tel.: +1-210-567-3859 (R.J.R.); +34-91-3943970 (A.R.)
| | - Walter Manucha
- Instituto de Medicina y Biologia Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Mendoza 5500, Argentina
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, Joe R and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
4
|
Min X, Zhu Y, Hu Y, Yang M, Yu H, Xiong Y, Fu W, Li J, Matsuda F, Xiong X. Analysis of PPP1R11 expression in granulosa cells during developmental follicles of yak and its effects on cell function. Reprod Domest Anim 2023; 58:129-140. [PMID: 36178063 DOI: 10.1111/rda.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 01/07/2023]
Abstract
The aims of this study were to analyse the protein phosphatase 1 regulatory subunit 11 (PPP1R11) expression and cellular localization in yak follicles and investigate its effects on cell proliferation, apoptosis and oestrogen secretion in granulosa cells (GCs). Ten healthy and non-pregnant female yaks (4-year-old) were used as experimental animals. The mRNA relative expression level of PPP1R11 in GCs from small (<3.0 mm), medium (3.0-5.9 mm) and large (6.0-9.0 mm) follicles was detected by RT-qPCR, and the cellular localization of PPP1R11 protein was detected by immunohistochemistry staining (IHC). After isolation, culture and identification of yak GCs in vitro, si-PPP1R11 and si-NC (negative control) were transfected into GCs. RT-qPCR and immunofluorescence staining were used to evaluate the interference efficiency, and ELISA was performed to detect oestrogen concentration. Then, EdU staining and TUNEL staining were conducted to analyse cell proliferation and apoptosis. In addition, the oestrogen synthesis, proliferation- and apoptosis-related genes were detected by RT-qPCR after knockdown PPP1R11. The results showed that PPP1R11 is mainly located in ovarian GCs, and the expression levels of PPP1R11 in GCs from large follicles were significantly higher than that from medium and small follicles. Transfection of si-PPP1R11 into GCs could significantly inhibit the expression of PPP1R11. Interestingly, the oestrogen secretion ability and the expression level of oestrogen pathway-related genes (STAR, CYP11A1, CYP19A1 and HSD17B1) were also significantly downregulated. Moreover, the proportion of positive cells was decreased, and cellular proliferation-related genes (PCNA, CCNB1 and CDC25A) were significantly downregulated after knockdown PPP1R11. However, the proportion of apoptotic cells was increased, and apoptosis-related genes (BAX, CASP3 and P53) were significantly upregulated. Taken together, this study was the first revealed the expression and cellular localization of PPP1R11 in yak follicles. Interference PPP1R11 could reduce oestrogen secretion, inhibit proliferation and promote apoptosis in GCs, which provided a basis for further studies on the regulatory mechanism of PPP1R11 in follicle development.
Collapse
Affiliation(s)
- Xingyu Min
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Yanjin Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Yulei Hu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Manzhen Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Hailing Yu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Fuko Matsuda
- Laboratory of Theriogenology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, China
| |
Collapse
|
5
|
Xiong X, Yang M, Yu H, Hu Y, Yang L, Zhu Y, Fei X, Pan B, Xiong Y, Fu W, Li J. MicroRNA‐342‐3p regulates yak oocyte meiotic maturation by targeting DNA methyltransferase 1. Reprod Domest Anim 2022; 57:761-770. [DOI: 10.1111/rda.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Manzhen Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Hailing Yu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Yulei Hu
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Luyu Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Yanjin Zhu
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Xixi Fei
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Bangting Pan
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Yan Xiong
- Key Laboratory for Animal Science of National Ethnic Affairs Commission Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Wei Fu
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Jian Li
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| |
Collapse
|
6
|
Xiong X, Ma H, Min X, Su F, Xiong Y, Li J. Effects of demethylase KDM4B on the biological characteristics and function of yak cumulus cells in vitro. Theriogenology 2021; 174:85-93. [PMID: 34425304 DOI: 10.1016/j.theriogenology.2021.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/28/2021] [Accepted: 08/17/2021] [Indexed: 12/01/2022]
Abstract
The present study aims to investigate the expression and function of lysine-specific demethylase 4B (KDM4B) in yak cumulus cells (CCs) in order to reveal the mechanisms by which KDM4B regulates biological characteristics and function of CCs. The cellular location of KDM4B and the methylation pattern of H3K9 were detected using immunofluorescence (IF) staining in CCs. The mRNA expression levels of apoptosis-related genes (BCL-2, HAX1 and BAX) and genes related to the estrogen pathway (ESR2, CYP17 and 3B-HSD) were estimated by qRT-PCR after knockdown of KDM4B expression by siRNA in yak CCs. Then, a proliferation assay, Annexin V-FITC staining, and ELISA were utilized to explore the effects of KDM4B silencing on CCs proliferation, apoptosis, and estrogen (E2) secretion, respectively. The results showed that KDM4B is located in the nuclei of yak CCs and is distributed in a dotted pattern. Knockdown KDM4B induced a decrease in cell proliferation, an increase in apoptotic rate and a reduction in the levels of E2 secretion of CCs. Additionally, the methylation patterns of H3K9me2 and H3K9me3 were significantly increased in CCs transfected with KDM4B siRNA-1 (P < 0.05). The mRNA expression level of apoptosis promoting BAX genes was significantly upregulated, but 3B-HSD, ESR2 and anti-apoptotic HAX1 genes were significantly downregulated in transfected CCs (P < 0.05). Furthermore, the rate of embryos developing from the 2-cell stage to blastocysts was lower in the siRNA-1 transfection group than that of the control group (28.6 ± 2.9% vs 40.4 ± 2.4%, P < 0.05). In conclusion, our study indicates that KDM4B regulates the biological characteristics and physiological function of yak CCs mainly through changing the methylation patterns of H3K9 and related gene expression levels.
Collapse
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Hongchen Ma
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Xinyu Min
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Feng Su
- College of Animal Science and Veterinary Medicine, Shandong Agriculture University, Taian, Shangdong, 271018, PR China
| | - Yan Xiong
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
7
|
Mao M, Cheng Y, Yang J, Chen Y, Xu L, Zhang X, Li Z, Chen C, Ju S, Zhou J, Wang L. Multifaced roles of PLAC8 in cancer. Biomark Res 2021; 9:73. [PMID: 34627411 PMCID: PMC8501656 DOI: 10.1186/s40364-021-00329-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
The role of PLAC8 in tumorigenesis has been gradually elucidated with the development of research. Although there are common molecular mechanisms that enforce cell growth, the impact of PLAC8 is varied and can, in some instances, have opposite effects on tumorigenesis. To systematically understand the role of PLAC8 in tumors, the molecular functions of PLAC8 in cancer will be discussed by focusing on how PLAC8 impacts tumorigenesis when it arises within tumor cells and how these roles can change in different stages of cancer progression with the ultimate goal of suppressing PLAC8-relevant cancer behavior and related pathologies. In addition, we highlight the diversity of PLAC8 in different tumors and its functional output beyond cancer cell growth. The comprehension of PLAC8's molecular function might provide new target and lead to the development of novel anticancer therapies.
Collapse
Affiliation(s)
- Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China
| | - Yifan Cheng
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, 318000, People's Republic of China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China
| | - Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China
| | - Siwei Ju
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China. .,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China.
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China. .,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China.
| |
Collapse
|
8
|
Kumar S, Singh MK, Chauhan MS. Expression of the developmental important candidate genes in oocytes, embryos, embryonic stem cells, cumulus cells, and fibroblast cells of buffalo (Bubalus bubalis). Gene Expr Patterns 2021; 41:119200. [PMID: 34329769 DOI: 10.1016/j.gep.2021.119200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The present study was undertaken to study the expression of the developmental important gene transcripts in immature oocytes, mature oocytes, different stages of IVF produced embryos, embryonic stem (ES), cumulus (BCC), fetal fibroblast (BFF), newborn fibroblast (NBF) and adult fibroblast (BAF) cells of buffalo by semi-quantitative RT-PCR. The expression of GLUT1, HSP70.1, POL A Polymerase, GDF9, BMP15, and SURVIVIN transcripts was found in immature oocytes, mature oocytes, 2-cell, 4-cell, 8-16 cell, morula, and the blastocyst. Interestingly, the CX43 expression was found in oocytes, embryos, and other cell types, but it was not detected in the blastocyst. However, the IFNT expression was found in the blastocyst only, but not in other cells. The buffalo ES cells showed the expression of intracellular and cell surface markers (NANOG, OCT4, SOX2, FOXD3, SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81) and alkaline phosphatase activity. Two ES cell lines (S-line and M-line-II) were continued to survive up to 98th passages (~630 days) and 97th passages (~624 days), respectively. It was interesting to note that GLUT1, CX43, HSP70.1, POL A Polymerase, GDF9, BMP15, and SURVIVIN transcripts (except the IFNT) were expressed in buffalo ES, BCC, BFF, NBF and BAF cells. This is the first preliminary report that the buffalo ES, BCC, BFF, NBF, and BAF cells expressed the several developmental important candidate genes. It is concluded that the expression of the major developmental important genes was not only expressed in the oocytes and embryos but also expressed in the ES, BCC, BFF, NBF, and BAF cells of buffalo.
Collapse
Affiliation(s)
- S Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - M K Singh
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - M S Chauhan
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
9
|
Cui LX, Tian YQ, Hao HS, Zou HY, Pang YW, Zhao SJ, Zhao XM, Zhu HB, Du WH. Knockdown of ASH1L methyltransferase induced apoptosis inhibiting proliferation and H3K36 methylation in bovine cumulus cells. Theriogenology 2020; 161:65-73. [PMID: 33296745 DOI: 10.1016/j.theriogenology.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 12/19/2022]
Abstract
This study aims to investigate the expression and function of absent, small, or homeotic 1-like (ASH1L) methyltransferase in bovine cumulus cells in order to reveal by which mechanisms ASH1L regulates epigenetic modification and apoptosis in cumulus cells. The location of ASH1L and the methylation pattern of H3K36 were detected using immunofluorescence staining in cumulus cells. Quantitative PCR (qPCR) and western blotting were used to screen for effective siRNA targeting the ASH1L gene. Also, the mRNA expression levels of apoptosis-related genes and polycomb inhibitory complex genes were estimated by qPCR after knocking down the ASH1L gene in bovine cumulus cells. Cell proliferation and apoptosis were measured with the CCK-8 method and Annexin V-FITC by flow cytometry, respectively. The results of immunofluorescence analysis showed that ASH1L is located in the nucleus of bovine cumulus cells and is distributed in a dotted pattern. ASH1L knockdown in cumulus cells induced a decrease in the levels of H3K36me1/2/3 methylation (P < 0.05). Additionally, ASH1L knockdown inhibited cell proliferation, increased the apoptosis rate, and upregulated the expression of apoptosis genes CASPASE-3, BAX and BAX/BCL-2 ratio (P < 0.05). Meanwhile, the mRNA expression levels of EZH2 and SUZ12, two subunits of PRC2 protein, were increased in cells with ASH1L knockdown (P < 0.05). Therefore, the expression of ASH1L methyltransferase and its function in on the apoptosis of bovine cumulus cells were first studied. The mechanism by which ASH1L regulates the histone methylation and apoptosis in cumulus cells was also revealed.
Collapse
Affiliation(s)
- Li-Xin Cui
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ya-Qing Tian
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Sheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui-Ying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yun-Wei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan-Jiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue-Ming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua-Bin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei-Hua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
10
|
Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum Reprod Update 2018; 24:245-266. [PMID: 29432538 PMCID: PMC5907346 DOI: 10.1093/humupd/dmx040] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/01/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Infertility affects ~7% of couples of reproductive age with little change in incidence in the last two decades. ART, as well as other interventions, have made major strides in correcting this condition. However, and in spite of advancements in the field, the age of the female partner remains a main factor for a successful outcome. A better understanding of the final stages of gamete maturation yielding an egg that can sustain embryo development and a pregnancy to term remains a major area for improvement in the field. This review will summarize the major cellular and molecular events unfolding at the oocyte-to-embryo transition. We will provide an update on the most important processes/pathways currently understood as the basis of developmental competence, including the molecular processes involved in mRNA storage, its recruitment to the translational machinery, and its degradation. We will discuss the hypothesis that the translational programme of maternal mRNAs plays a key role in establishing developmental competence. These regulations are essential to assemble the machinery that is used to establish a totipotent zygote. This hypothesis further supports the view that embryogenesis begins during oogenesis. A better understanding of the events required for developmental competence will guide the development of novel strategies to monitor and improve the success rate of IVF. Using this information, it will be possible to develop new biomarkers that may be used to better predict oocyte quality and in selection of the best egg for IVF.
Collapse
Affiliation(s)
- Marco Conti
- Department of OBGYN-RS, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA
| | - Federica Franciosi
- Department of OBGYN-RS, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA
| |
Collapse
|
11
|
Jin Z, Guan L, Xiang GM, Gao BA. Radiation resistance of the lung adenocarcinoma is related to the AKT-Onzin-POU5F1 axis. Biochem Biophys Res Commun 2018; 499:538-543. [PMID: 29596836 DOI: 10.1016/j.bbrc.2018.03.185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/20/2022]
Abstract
Non-small cell lung carcinoma is the predominant type of lung cancer, and shows an easily developable tolerance to radiotherapy. Cancer stem cells are suggested to be involved in the resistance against therapies. Onzin might be accumulated during the process tumor overcoming the radiation stress. To address the relationship between Onzin, stemness and radiation resistance, we treated the lung cancer tumor bearing mice with radiaotherapy and observed the differences between radiation sensitive (RS) and resistant (RR) tumors. Immunohistochemistry and HE staining were used to observe Onzin and POU5F1 expression in tumor tissues. Quantitative realtime-PCR and Western blot were applied for Onzin and POU5F1 in tumors and cells. In-vitro cellular viability was assessed by CCK8 methods for tumor derived cells. The stably transfected A549 cell lines overexpressing Onzin were generated through lentivirus transfection. After radiotherapy, those RR adenocarcinoma tumors and cells derived from them showed an increased Onzin expression. Further, RR cells were found upregulated stemness, indicated by increased sphericity and proliferation, as well as POU5F1 expression. Next, we overexpressed Onzin in the A549 cells and found an elevated POU5F1 expression, increased proliferation, and enhanced sphericity. Moreover, this could be suppressed by the AKT inhibitor MK-2260. In vivo, the A549 cells overexpressing Onzin showed not only higher tumor formation capability and growth, but also a significant resistance to radiation. Taken together, RR tumors have upregulated Onzin and POU5F1 expression. Ectopic expression of Onzin promotes the POU5F1 expression as well as stemness functions, and confers adenocarcinomas the resistance to radiotherapy.
Collapse
Affiliation(s)
- Zhu Jin
- Institute of Respiratory Disease, China Three Gorges University, Yichang Central People's Hospital, China
| | - Li Guan
- Institute of Respiratory Disease, China Three Gorges University, Yichang Central People's Hospital, China
| | - Guang-Ming Xiang
- Institute of Respiratory Disease, China Three Gorges University, Yichang Central People's Hospital, China
| | - Bao-An Gao
- Institute of Respiratory Disease, China Three Gorges University, Yichang Central People's Hospital, China.
| |
Collapse
|
12
|
Sugimura S, Yamanouchi T, Palmerini MG, Hashiyada Y, Imai K, Gilchrist RB. Effect of pre-in vitro maturation with cAMP modulators on the acquisition of oocyte developmental competence in cattle. J Reprod Dev 2018; 64:233-241. [PMID: 29503399 PMCID: PMC6021610 DOI: 10.1262/jrd.2018-009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The administration of follicle-stimulating hormone (FSH) prior to oocyte retrieval improves oocyte developmental competence. During bovine embryo production in vitro,
however, oocytes are typically derived from FSH-unprimed animals. In the current study, we examined the effect of pre-in vitro maturation (IVM) with cAMP modulators, also
known as the second messengers of FSH, on the developmental competence of oocytes derived from small antral follicles (2–4 mm) of FSH-unprimed animals. Pre-IVM with
N6,2ʹ-O-dibutyryladenosine 3′,5′-cyclicmonophosphate (dbcAMP) and 3-isobutyl-1-methylxanthine (IBMX) for 2 h improved the blastocyst formation in oocytes stimulated by FSH or amphiregulin
(AREG). Furthermore, pre-IVM enhanced the expression of the FSH- or AREG-stimulated extracellular matrix-related genes HAS2, TNFAIP6, and
PTGS2, and epidermal growth factor (EGF)-like peptide-related genes AREG and EREG. Additionally, pre-IVM with dbcAMP and IBMX enhanced
the expression of EGFR, and also increased and prolonged cumulus cell-oocyte gap junctional communication. The improved oocyte development observed using the pre-IVM
protocol was ablated by an EGF receptor phosphorylation inhibitor. These results indicate that pre-IVM with cAMP modulators could contribute to the acquisition of developmental competence by
bovine oocytes from small antral follicles through the modulation of EGF receptor signaling and oocyte-cumulus/cumulus-cumulus gap junctional communication.
Collapse
Affiliation(s)
- Satoshi Sugimura
- Department of Biological Production, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | | | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | | | - Kei Imai
- Department of Sustainable Agriculture, Rakuno Gakuen University, Hokkaido 069-8501, Japan
| | - Robert B Gilchrist
- Discipline of Obstetrics & Gynaecology, School of Women's & Children's Health, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
13
|
Transcriptomic signature of the follicular somatic compartment surrounding an oocyte with high developmental competence. Sci Rep 2017; 7:6815. [PMID: 28755009 PMCID: PMC5533789 DOI: 10.1038/s41598-017-07039-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022] Open
Abstract
During antral folliculogenesis, developmental competence of prospective oocytes is regulated in large part by the follicular somatic component to prepare the oocyte for the final stage of maturation and subsequent embryo development. The underlying molecular mechanisms are poorly understood. Oocytes reaching the advanced stage of follicular growth by administration of exogenous follicle-stimulating hormone (FSH) possess higher developmental competence than oocytes in FSH-untreated smaller follicles. In this study, the transcriptomic profile of the cumulus cells from cows receiving FSH administration (FSH-priming) was compared, as a model of high oocyte competence, with that from untreated donor cows (control). Ingenuity Pathway Analysis showed that cumulus cells receiving FSH-priming were rich in down-regulated transcripts associated with cell movement and migration, including the extracellular matrix-related transcripts, probably preventing the disruption of cell-to-cell contacts. Interestingly, the transcriptomic profile of up-regulated genes in the control group was similar to that of granulosa cells from atretic follicles. Interferon regulatory factor 7 was activated as the key upstream regulator of FSH-priming. Thus, acquisition of developmental competence by oocytes can be ensured by the integrity of cumulus cells involved in cell-to-cell communication and cell survival, which may help achieve enhanced oocyte-somatic cell coupling.
Collapse
|
14
|
Somfai T, Matoba S, Inaba Y, Nakai M, Imai K, Nagai T, Geshi M. Cytoskeletal and mitochondrial properties of bovine oocytes obtained by Ovum Pick-Up: the effects of follicle stimulation and in vitro maturation. Anim Sci J 2015; 86:970-80. [PMID: 26154026 DOI: 10.1111/asj.12387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/19/2014] [Indexed: 11/28/2022]
Abstract
Follicle stimulation by follicular stimulating hormone (FSH) is known to improve developmental competence of bovine oocytes obtained by Ovum Pick-Up (OPU); however, the exact factors in oocytes affected by this treatment have remained unclear. We compared in vitro matured (IVM) oocytes obtained at the immature stage from cows by OPU either without or with stimulation with FSH (non-stimulated and stimulated OPU, respectively) to those obtained by superstimulation and in vivo maturation in terms of cytoskeleton morphology, mitochondrial distribution, intracellular adenosine triphosphate (ATP) content and H2 O2 levels at the metaphase-II stage and intracellular Ca(2+) levels after in vitro fertilization (IVF). Confocal microscopy after immunostaining revealed reduced size of the meiotic spindle, associated with increased tendencies of microfilament degradation and insufficient mitochondrial re-distribution in non-stimulated OPU-derived IVM oocytes compared with those collected by stimulated OPU, which in turn resembled in vivo matured oocytes. However, there was no difference in mitochondrial functions between oocytes obtained by stimulated or non-stimulated OPU in terms of ATP content, cytoplasmic H2 O2 levels, base Ca(2+) levels and the frequencies and amplitudes of Ca(2+) oscillations after IVF. Larger size of metaphase spindles in oocytes obtained by stimulated OPU may reflect and potentially contribute to their high developmental competence.
Collapse
Affiliation(s)
- Tamás Somfai
- Animal Breeding and Reproduction Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
| | - Satoko Matoba
- Animal Breeding and Reproduction Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
| | - Yasushi Inaba
- Animal Breeding and Reproduction Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
| | - Michiko Nakai
- National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Kei Imai
- National Livestock Breeding Center, Nishigo, Japan
| | - Takashi Nagai
- Food and Fertilizer Technology Center, Taipei, Taiwan
| | - Masaya Geshi
- Animal Breeding and Reproduction Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
| |
Collapse
|
15
|
Akagi S, Matsukawa K, Takahashi S. Factors affecting the development of somatic cell nuclear transfer embryos in Cattle. J Reprod Dev 2015; 60:329-35. [PMID: 25341701 PMCID: PMC4219988 DOI: 10.1262/jrd.2014-057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nuclear transfer is a complex multistep procedure that includes oocyte maturation, cell cycle synchronization of donor
cells, enucleation, cell fusion, oocyte activation and embryo culture. Therefore, many factors are believed to contribute to
the success of embryo development following nuclear transfer. Numerous attempts to improve cloning efficiency have been
conducted since the birth of the first sheep by somatic cell nuclear transfer. However, the efficiency of somatic cell
cloning has remained low, and applications have been limited. In this review, we discuss some of the factors that affect the
developmental ability of somatic cell nuclear transfer embryos in cattle.
Collapse
Affiliation(s)
- Satoshi Akagi
- Animal Breeding and Reproduction Research Division, NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901, Japan
| | | | | |
Collapse
|
16
|
Velazquez MA, Kues WA, Niemann H. Biomedical applications of ovarian transvaginal ultrasonography in cattle. Anim Biotechnol 2014; 25:266-93. [PMID: 24813220 DOI: 10.1080/10495398.2013.870075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ovarian transvaginal ultrasonography (OTU) has been used world-wide for commercial ovum pick-up programs for in vitro embryo production in elite herds, providing an excellent model for the elucidation of factors controlling bovine oocyte developmental competence. Noninvasive sampling and treatment of ovarian structures is easily accomplished with bovine OTU techniques providing a promising system for in vivo delivery of transgenes directly into the ovary. The current review summarizes existing bovine OTU models and provides prospective applications of bovine OTU to undertake research in reproductive topics of biomedical relevance, with special emphasis on the development of in vivo gene transfer strategies.
Collapse
Affiliation(s)
- Miguel A Velazquez
- a Centre for Biological Sciences , University of Southampton, Southampton General Hospital , Southampton , United Kingdom
| | | | | |
Collapse
|
17
|
Akagi S, Geshi M, Nagai T. Recent progress in bovine somatic cell nuclear transfer. Anim Sci J 2013; 84:191-9. [PMID: 23480698 DOI: 10.1111/asj.12035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/02/2012] [Indexed: 11/30/2022]
Abstract
Bovine somatic cell nuclear transfer (SCNT) embryos can develop to the blastocyst stage at a rate similar to that of embryos produced by in vitro fertilization. However, the full-term developmental rate of SCNT embryos is very low, owing to the high embryonic and fetal losses after embryo transfer. In addition, increased birth weight and postnatal mortality are observed at high rates in cloned calves. The low efficiency of SCNT is probably attributed to incomplete reprogramming of the donor nucleus and most of the developmental problems of clones are thought to be caused by epigenetic defects. Applications of SCNT will depend on improvement in the efficiency of production of healthy cloned calves. In this review, we discuss problems and recent progress in bovine SCNT.
Collapse
Affiliation(s)
- Satoshi Akagi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Japan.
| | | | | |
Collapse
|
18
|
Sugimura S, Akai T, Hashiyada Y, Aikawa Y, Ohtake M, Matsuda H, Kobayashi S, Kobayashi E, Konishi K, Imai K. Effect of embryo density on in vitro development and gene expression in bovine in vitro-fertilized embryos cultured in a microwell system. J Reprod Dev 2012; 59:115-22. [PMID: 23154384 PMCID: PMC3934200 DOI: 10.1262/jrd.2012-113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify embryos individually during in vitro development, we
previously developed the well-of-the-well (WOW) dish, which contains 25 microwells. Here
we investigated the effect of embryo density (the number of embryos per volume of medium)
on in vitro development and gene expression of bovine in
vitro-fertilized embryos cultured in WOW dishes. Using both conventional
droplet and WOW culture formats, 5, 15, and 25 bovine embryos were cultured in 125 µl
medium for 168 h. The blastocysts at Day 7 were analyzed for number of cells and
expression of ten genes (CDX2, IFN-tau,
PLAC8, NANOG, OCT4,
SOX2, AKR1B1, ATP5A1,
GLUT1 and IGF2R). In droplet culture, the rates of
formation of >4-cell cleavage embryos and blastocysts were significantly lower in
embryos cultured at 5 embryos per droplet than in those cultured at 15 or 25 embryos per
droplet, but not in WOW culture. In both droplet and WOW culture, developmental kinetics
and blastocyst cell numbers did not differ among any groups. IFN-tau
expression in embryos cultured at 25 embryos per droplet was significantly higher than in
those cultured at 15 embryos per droplet and in artificial insemination (AI)-derived
blastocysts. Moreover, IGF2R expression was significantly lower in the
25-embryo group than in the 5-embryo group and in AI-derived blastocysts. In WOW culture,
these expressions were not affected by embryo density and were similar to those in
AI-derived blastocysts. These results suggest that, as compared with conventional droplet
culture, in vitro development and expression of IFN-tau
and IGF2R in the microwell system may be insensitive to embryo
density.
Collapse
|
19
|
Sugimura S, Matoba S, Hashiyada Y, Aikawa Y, Ohtake M, Matsuda H, Kobayashi S, Konishi K, Imai K. Oxidative phosphorylation-linked respiration in individual bovine oocytes. J Reprod Dev 2012; 58:636-41. [PMID: 22785440 DOI: 10.1262/jrd.2012-082] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial bioenergetics in mammalian oocytes has not been sufficiently characterized. In this study, the function of oxidative phosphorylation (OXPHOS), a major pathway in mitochondria, was investigated in individual bovine oocytes by monitoring oxygen consumption using modified scanning electrochemical microscopy (SECM). At the germinal vesicle (GV) stage, 65% of basal respiration was used for mitochondrial respiration, which was inhibited by complex IV inhibitor. Around 63% of mitochondrial respiration was coupled to ATP synthesis, as determined by sensitivity to an ATP synthase inhibitor, and the remaining 37% was attributed to proton leak. In contrast, 50% and 43% of mitochondrial respiration were used for ATP synthesis in in vivo- and in vitro-derived metaphase II (MII)-stage oocytes, respectively. ATP-linked respiration, in both in vivo- and in vitro-derived MII-stage oocytes, was significantly lower than in GV-stage oocytes, suggesting that OXPHOS in bovine oocytes is more active at the GV stage compared with the MII stage. Interestingly, basal respiration in in vitro-derived MII oocytes was significantly higher than for in vivo-derived oocytes, reflecting an increase in proton leak. Next, we assessed respiration in MII oocytes cultured for 8 h. The aged oocytes had a significantly reduced maximum respiratory capacity, which was stimulated by a mitochondrial uncoupler, and reduced ATP-linked respiration compared with non-aged oocytes. However, the aging-related phenomenon could be prevented by caffeine treatment. We conclude that OXPHOS in bovine oocytes varies in the transition from GV to MII stage, in vitro maturation and the aging process. This approach will be particularly useful for analyzing mitochondrial bioenergetics in individual mammalian oocytes.
Collapse
|
20
|
Sugimura S, Akai T, Hashiyada Y, Somfai T, Inaba Y, Hirayama M, Yamanouchi T, Matsuda H, Kobayashi S, Aikawa Y, Ohtake M, Kobayashi E, Konishi K, Imai K. Promising system for selecting healthy in vitro-fertilized embryos in cattle. PLoS One 2012; 7:e36627. [PMID: 22590579 PMCID: PMC3348877 DOI: 10.1371/journal.pone.0036627] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/03/2012] [Indexed: 11/18/2022] Open
Abstract
Conventionally, in vitro–fertilized (IVF) bovine embryos are morphologically evaluated at the time of embryo transfer to select those that are likely to establish a pregnancy. This method is, however, subjective and results in unreliable selection. Here we describe a novel selection system for IVF bovine blastocysts for transfer that traces the development of individual embryos with time-lapse cinematography in our developed microwell culture dish and analyzes embryonic metabolism. The system can noninvasively identify prognostic factors that reflect not only blastocyst qualities detected with histological, cytogenetic, and molecular analysis but also viability after transfer. By assessing a combination of identified prognostic factors—(i) timing of the first cleavage; (ii) number of blastomeres at the end of the first cleavage; (iii) presence or absence of multiple fragments at the end of the first cleavage; (iv) number of blastomeres at the onset of lag-phase, which results in temporary developmental arrest during the fourth or fifth cell cycle; and (v) oxygen consumption at the blastocyst stage—pregnancy success could be accurately predicted (78.9%). The conventional method or individual prognostic factors could not accurately predict pregnancy. No newborn calves showed neonatal overgrowth or death. Our results demonstrate that these five predictors and our system could provide objective and reliable selection of healthy IVF bovine embryos.
Collapse
Affiliation(s)
| | - Tomonori Akai
- Dai Nippon Printing Co., Ltd., Kashiwa, Chiba, Japan
| | | | - Tamás Somfai
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
- National Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | - Yasushi Inaba
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
- National Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | | | | | - Hideo Matsuda
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | - Shuji Kobayashi
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | - Yoshio Aikawa
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | - Masaki Ohtake
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | - Eiji Kobayashi
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | | | - Kei Imai
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
- * E-mail:
| |
Collapse
|