1
|
Vera-López KJ, Davila-Del-Carpio G, Nieto-Montesinos R. Macamides as Potential Therapeutic Agents in Neurological Disorders. Neurol Int 2024; 16:1611-1625. [PMID: 39585076 PMCID: PMC11587492 DOI: 10.3390/neurolint16060117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024] Open
Abstract
Therapeutic treatment of nervous system disorders has represented one of the significant challenges in medicine for the past several decades. Technological and medical advances have made it possible to recognize different neurological disorders, which has led to more precise identification of potential therapeutic targets, in turn leading to research into developing drugs aimed at these disorders. In this sense, recent years have seen an increase in exploration of the therapeutic effects of various metabolites extracted from Maca (Lepidium meyenii), a plant native to the central alpine region of Peru. Among the most important secondary metabolites contained in this plant are macamides, molecules derived from N-benzylamides of long-chain fatty acids. Macamides have been proposed as active drugs to treat some neurological disorders. Their excellent human tolerance and low toxicity along with neuroprotective, immune-enhancing, and and antioxidant properties make them ideal for exploration as therapeutic agents. In this review, we have compiled information from various studies on macamides, along with theories about the metabolic pathways on which they act.
Collapse
Affiliation(s)
| | | | - Rita Nieto-Montesinos
- Escuela Profesional de Farmacía y Bioquímica, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (K.J.V.-L.); (G.D.-D.-C.)
| |
Collapse
|
2
|
Liu D, Ma L, Zheng J, Zhang Z, Zhang N, Han Z, Wang X, Zhao J, Lv S, Cui H. Isopsoralen Improves Glucocorticoid-induced Osteoporosis by Regulating Purine Metabolism and Promoting cGMP/PKG Pathway-mediated Osteoblast Differentiation. Curr Drug Metab 2024; 25:288-297. [PMID: 39005121 DOI: 10.2174/0113892002308141240628071541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND The effects of Isopsoralen (ISO) in promoting osteoblast differentiation and inhibiting osteoclast formation are well-established, but the mechanism underlying ISO's improvement of Glucocorticoid- Induced Osteoporosis (GIOP) by regulating metabolism remains unclear. METHODS This study aims to elucidate the mechanism of ISO treatment for GIOP through non-targeted metabolomics based on ISO's efficacy in GIOP. Initially, we established a GIOP female mouse model and assessed ISO's therapeutic effects using micro-CT detection, biomechanical testing, serum calcium (Ca), and phosphorus (P) level detection, along with histological analyses using hematoxylin and eosin (HE), Masson, and tartrate-resistant acidic phosphatase (TRAP) staining. Subsequently, non-targeted metabolomics was employed to investigate ISO's impact on serum metabolites in GIOP mice. RT-qPCR and Western blot analyses were conducted to measure the levels of enzymes associated with these metabolites. Building on the metabolomic results, we explored the effects of ISO on the cyclic Guanosine Monophosphate (cGMP)/Protein Kinase G (PKG) pathway and its role in mediating osteoblast differentiation. RESULTS Our findings demonstrate that ISO intervention effectively enhances the bone microarchitecture and strength of GIOP mice. It mitigates pathological damage, such as structural damage in bone trabeculae, reduced collagen fibers, and increased osteoclasts, while improving serum Ca and P levels in GIOP mice. Non-- targeted metabolomics revealed purine metabolism as a common pathway between the Control and GIOP groups, as well as between the ISO high-dose (ISOH) group and the GIOP group. ISO intervention upregulated inosine and adenosine levels, downregulated guanosine monophosphate levels, increased Adenosine Deaminase (ADA) expression, and decreased cGMP-specific 3',5'-cyclic phosphodiesterase (PDE5) expression. Additionally, ISO intervention elevated serum cGMP levels, upregulated PKGI and PKGII expression in bone tissues, as well as the expression of Runt-related transcription factor 2 (Runx2) and Osterix, and increased serum Alkaline Phosphatase (ALP) activity. CONCLUSION In summary, ISO was able to enhance the bone microstructure and bone strength of GIOP mice and improve their Ca, P, and ALP levels, which may be related to ISO's regulation of purine metabolism and promotion of osteoblast differentiation mediated by the cGMP/PKG pathway. This suggests that ISO is a potential drug for treating GIOP. However, further research is still needed to explore the specific targets and clinical applications of ISO.
Collapse
Affiliation(s)
- Defeng Liu
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Lingyun Ma
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Jihui Zheng
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Zhenqun Zhang
- Department of Endocrinology, Hebei University of Chinese Medicine,Cangzhou, China
| | - Nana Zhang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Zhongqian Han
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Xuejie Wang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Jianyong Zhao
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Shuquan Lv
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Huantian Cui
- Faculty of Life Sciences, Yunnan University of Chinese Medicine,Kunming, China
| |
Collapse
|
3
|
Perfilova VN, Muzyko EA, Taran AS, Shevchenko AA, Naumenko LV. Problems and prospects for finding new pharmacological agents among adenosine receptor agonists, antagonists, or their allosteric modulators for the treatment of cardiovascular diseases. BIOMEDITSINSKAIA KHIMIIA 2023; 69:353-370. [PMID: 38153051 DOI: 10.18097/pbmc20236906353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
A1-adenosine receptors (A1AR) are widely distributed in the human body and mediate many different effects. They are abundantly present in the cardiovascular system, where they control angiogenesis, vascular tone, heart rate, and conduction. This makes the cardiovascular system A1AR an attractive target for the treatment of cardiovascular diseases (CVD). The review summarizes the literature data on the structure and functioning of A1AR, and analyzes their involvement in the formation of myocardial hypertrophy, ischemia-reperfusion damage, various types of heart rhythm disorders, chronic heart failure, and arterial hypertension. Special attention is paid to the role of some allosteric regulators of A1AR as potential agents for the CVD treatment.
Collapse
Affiliation(s)
- V N Perfilova
- Volgograd State Medical University, Volgograd, Russia; Volgograd Medical Research Center, Volgograd, Russia
| | - E A Muzyko
- Volgograd State Medical University, Volgograd, Russia
| | - A S Taran
- Volgograd State Medical University, Volgograd, Russia
| | | | - L V Naumenko
- Volgograd State Medical University, Volgograd, Russia
| |
Collapse
|
4
|
Ai Y, Wang H, Liu L, Qi Y, Tang S, Tang J, Chen N. Purine and purinergic receptors in health and disease. MedComm (Beijing) 2023; 4:e359. [PMID: 37692109 PMCID: PMC10484181 DOI: 10.1002/mco2.359] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Purines and purinergic receptors are widely distributed throughout the human body. Purine molecules within cells play crucial roles in regulating energy metabolism and other cellular processes, while extracellular purines transmit signals through specific purinergic receptors. The ubiquitous purinergic signaling maintains normal neural excitability, digestion and absorption, respiratory movement, and other complex physiological activities, and participates in cell proliferation, differentiation, migration, and death. Pathological dysregulation of purinergic signaling can result in the development of various diseases, including neurodegeneration, inflammatory reactions, and malignant tumors. The dysregulation or dysfunction of purines and purinergic receptors has been demonstrated to be closely associated with tumor progression. Compared with other subtypes of purinergic receptors, the P2X7 receptor (P2X7R) exhibits distinct characteristics (i.e., a low affinity for ATP, dual functionality upon activation, the mediation of ion channels, and nonselective pores formation) and is considered a promising target for antitumor therapy, particularly in patients with poor response to immunotherapy This review summarizes the physiological and pathological significance of purinergic signaling and purinergic receptors, analyzes their complex relationship with tumors, and proposes potential antitumor immunotherapy strategies from tumor P2X7R inhibition, tumor P2X7R overactivation, and host P2X7R activation. This review provides a reference for clinical immunotherapy and mechanism investigation.
Collapse
Affiliation(s)
- Yanling Ai
- Department of OncologyHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Hengyi Wang
- Department of Infectious DiseasesHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Lu Liu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Yulin Qi
- Department of OphthalmologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
- Postdoctoral Research Station of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan ProvinceHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and EngineeringCollege of Biomedical EngineeringChongqing Medical UniversityChongqingChina
| |
Collapse
|
5
|
Lazurova Z, Mitro P, Popovnakova M. The Role of Adenosine and Its Degradation Enzymes - Adenosinedeaminase and Adenosinekinase in Pathogenesis of Vasovagal Syncope. Eur J Intern Med 2022; 105:77-81. [PMID: 36075846 DOI: 10.1016/j.ejim.2022.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Adenosine is mediator regulating physiological and pathological processes in organism. It probably plays a role in pathogenesis of vasovagal syncopes (VVS), too. Adenosine, its receptors and degradation enzymes- adenosinedeaminase (ADA) and adenosinekinase (ADK), are called the adenosinergic system. AIM We aimed to evaluate serum levels of adenosine, ADA and ADK in patients with tilt-induced VVS and compare them to tlit-negative controls. Secondary aim was to compare the levels between the types of VVS and correlate them with hemodynamic parameters. SUBJECTS AND METHODS Altogether 132 individuals were involved in this study (age 39,88±15,64 years, 51 males). All patients underwent head up tilt test (HUTT) in differential diagnosis of syncope. Blood sampling was performed before and after HUTT. Baseline and stimulated serum levels of adenosine, ADA and ADK were evaluated by ELISA method. RESULTS HUTT was positive in 91 patients (HUTT+), 41 individuals were negative (HUTT-). HUTT+ patients had higher baseline and stimulated adenosine levels, when compared to HUTT- population. The rise in adenosine was higher in HUTT+ group. On the other hand, the increase of ADA was significantly higher in HUTT- subjects. Among HUTT+ group, the highest adenosine was found during vasodepressoric VVS. CONCLUSION Adenosinergic system may play role in pathogenesis of VVS. Patients with VVS have higher adenosine levels, that may be caused by attenuated degradation. Adenosine seems to be involved predominantly in vasodepressoric type of VVS. Further research evaluating complex function of adenosinergic system in these patients is needed.
Collapse
Affiliation(s)
- Zora Lazurova
- 4th Department of Internal medicine, University of PJ Safarik, Medical Faculty, Košice, Slovakia; 1st Department of Cardiology, Institute of Cardiovascular Diseases of Eastern Slovakia, Košice, Slovakia.
| | - Peter Mitro
- 1st Department of Cardiology, Institute of Cardiovascular Diseases of Eastern Slovakia, Košice, Slovakia
| | | |
Collapse
|
6
|
Mori A, Chen JF, Uchida S, Durlach C, King SM, Jenner P. The Pharmacological Potential of Adenosine A 2A Receptor Antagonists for Treating Parkinson's Disease. Molecules 2022; 27:2366. [PMID: 35408767 PMCID: PMC9000505 DOI: 10.3390/molecules27072366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
The adenosine A2A receptor subtype is recognized as a non-dopaminergic pharmacological target for the treatment of neurodegenerative disorders, notably Parkinson's disease (PD). The selective A2A receptor antagonist istradefylline is approved in the US and Japan as an adjunctive treatment to levodopa/decarboxylase inhibitors in adults with PD experiencing OFF episodes or a wearing-off phenomenon; however, the full potential of this drug class remains to be explored. In this article, we review the pharmacology of adenosine A2A receptor antagonists from the perspective of the treatment of both motor and non-motor symptoms of PD and their potential for disease modification.
Collapse
Affiliation(s)
- Akihisa Mori
- Kyowa Kirin Co., Ltd., Tokyo 100-0004, Japan; (A.M.); (S.U.)
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, Wenzhou Medical University, Wenzhou 325015, China;
| | - Shinichi Uchida
- Kyowa Kirin Co., Ltd., Tokyo 100-0004, Japan; (A.M.); (S.U.)
| | | | | | - Peter Jenner
- Institute of Pharmaceutical Science, Kings College London, London SE1 9NH, UK
| |
Collapse
|
7
|
Effects of Postnatal Caffeine Exposure on Absence Epilepsy and Comorbid Depression: Results of a Study in WAG/Rij Rats. Brain Sci 2022; 12:brainsci12030361. [PMID: 35326317 PMCID: PMC8946037 DOI: 10.3390/brainsci12030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 02/01/2023] Open
Abstract
The present study aims to investigate effect of early caffeine exposure on epileptogenesis and occurrence of absence seizures and comorbid depression in adulthood. For this purpose, Wistar Albino Glaxo from Rijswijk (WAG/Rij) rats were enrolled in a control and two experimental groups on the 7th day after the delivery. The rats in experimental groups received either 10 or 20 mg/kg caffeine subcutaneously while animals in control group had subcutaneous injections of 0.9% saline. The injections started at postnatal day 7 (PND7) and were continued each day for 5 days. At 6–7 months of age, electroencephalogram (EEG) recordings and behavioral recordings in the forced swimming test, sucrose consumption/preference test and locomotor activity test were carried out. At 6 months of age, 10 mg/kg and 20 mg/kg caffeine-treated WAG/Rij rats showed increased immobility latency and active swimming duration in forced swimming test when compared with the untreated controls. In addition, 20 mg/kg caffeine treatment decreased immobility time. In sucrose preference/consumption tests, WAG/Rij rats in 10 mg/kg caffeine group demonstrated higher sucrose consumption and preference compared to untreated controls. The rats treated with 20 mg/kg caffeine showed higher sucrose preference compared to control rats. The exploratory activity of rats in the 10 mg/kg caffeine-treated group was found to be higher than in the 20 mg/kg caffeine-treated and control groups in the locomotor activity test. At 7 months of age, caffeine-treated animals showed a decreased spike-wave discharge (SWD) number compared to the control animals. These results indicate that postnatal caffeine treatment may decrease the number of seizure and depression-like behaviors in WAG/Rij rats in later life. Caffeine blockade of adenosine receptors during the early developmental period may have beneficial effects in reducing seizure frequency and depression-like behaviors in WAG/Rij rat model.
Collapse
|
8
|
Emerging roles of dysregulated adenosine homeostasis in brain disorders with a specific focus on neurodegenerative diseases. J Biomed Sci 2021; 28:70. [PMID: 34635103 PMCID: PMC8507231 DOI: 10.1186/s12929-021-00766-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
In modern societies, with an increase in the older population, age-related neurodegenerative diseases have progressively become greater socioeconomic burdens. To date, despite the tremendous effort devoted to understanding neurodegenerative diseases in recent decades, treatment to delay disease progression is largely ineffective and is in urgent demand. The development of new strategies targeting these pathological features is a timely topic. It is important to note that most degenerative diseases are associated with the accumulation of specific misfolded proteins, which is facilitated by several common features of neurodegenerative diseases (including poor energy homeostasis and mitochondrial dysfunction). Adenosine is a purine nucleoside and neuromodulator in the brain. It is also an essential component of energy production pathways, cellular metabolism, and gene regulation in brain cells. The levels of intracellular and extracellular adenosine are thus tightly controlled by a handful of proteins (including adenosine metabolic enzymes and transporters) to maintain proper adenosine homeostasis. Notably, disruption of adenosine homeostasis in the brain under various pathophysiological conditions has been documented. In the past two decades, adenosine receptors (particularly A1 and A2A adenosine receptors) have been actively investigated as important drug targets in major degenerative diseases. Unfortunately, except for an A2A antagonist (istradefylline) administered as an adjuvant treatment with levodopa for Parkinson's disease, no effective drug based on adenosine receptors has been developed for neurodegenerative diseases. In this review, we summarize the emerging findings on proteins involved in the control of adenosine homeostasis in the brain and discuss the challenges and future prospects for the development of new therapeutic treatments for neurodegenerative diseases and their associated disorders based on the understanding of adenosine homeostasis.
Collapse
|
9
|
A 2A Adenosine Receptor as a Potential Biomarker and a Possible Therapeutic Target in Alzheimer's Disease. Cells 2021; 10:cells10092344. [PMID: 34571993 PMCID: PMC8469578 DOI: 10.3390/cells10092344] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative pathologies. Its incidence is in dramatic growth in Western societies and there is a need of both biomarkers to support the clinical diagnosis and drugs for the treatment of AD. The diagnostic criteria of AD are based on clinical data. However, it is necessary to develop biomarkers considering the neuropathology of AD. The A2A receptor, a G-protein coupled member of the P1 family of adenosine receptors, has different functions crucial for neurodegeneration. Its activation in the hippocampal region regulates synaptic plasticity and in particular glutamate release, NMDA receptor activation and calcium influx. Additionally, it exerts effects in neuroinflammation, regulating the secretion of pro-inflammatory cytokines. In AD patients, its expression is increased in the hippocampus/entorhinal cortex more than in the frontal cortex, a phenomenon not observed in age-matched control brains, indicating an association with AD pathology. It is upregulated in peripheral blood cells of patients affected by AD, thus reflecting its increase at central neuronal level. This review offers an overview on the main AD biomarkers and the potential role of A2A adenosine receptor as a new marker and therapeutic target.
Collapse
|
10
|
Salcman B, Affleck K, Bulfone-Paus S. P2X Receptor-Dependent Modulation of Mast Cell and Glial Cell Activities in Neuroinflammation. Cells 2021; 10:cells10092282. [PMID: 34571930 PMCID: PMC8471135 DOI: 10.3390/cells10092282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 11/27/2022] Open
Abstract
Localisation of mast cells (MCs) at the abluminal side of blood vessels in the brain favours their interaction with glial cells, neurons, and endothelial cells, resulting in the activation of these cells and the release of pro-inflammatory mediators. In turn, stimulation of glial cells, such as microglia, astrocytes, and oligodendrocytes may result in the modulation of MC activities. MCs, microglia, astrocytes, and oligodendrocytes all express P2X receptors (P2XRs) family members that are selectively engaged by ATP. As increased concentrations of extracellular adenosine 5′-triphosphate (ATP) are present in the brain in neuropathological conditions, P2XR activation in MCs and glial cells contributes to the control of their communication and amplification of the inflammatory response. In this review we discuss P2XR-mediated MC activation, its bi-directional effect on microglia, astrocytes and oligodendrocytes and role in neuroinflammation.
Collapse
Affiliation(s)
- Barbora Salcman
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK;
| | - Karen Affleck
- GlaxoSmithKline, Immunology Research Unit, Stevenage SG1 2NY, UK;
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK;
- Correspondence:
| |
Collapse
|
11
|
Larrick JW, Larrick JW, Mendelsohn AR. Response to Hypoxia in Cognitive Decline. Rejuvenation Res 2021; 24:319-324. [PMID: 34314252 DOI: 10.1089/rej.2021.0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammaging, the increase of proinflammatory processes with increasing age, has multiple mechanisms from increasing numbers of senescent cells secreting cytokines to changes in metabolic processes. Alterations of oxygen metabolism with aging, especially decreased levels of O2 with age resulting from endocrine and cardiovascular dysfunction as well as desensitization of cellular response to hypoxia, may exacerbate inflammaging, which in turn creates further oxygen metabolic dysfunction. During aging, decline in levels of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), BPG mutase, and adenosine A2B receptor, a key adenosine signaling receptor that can augment 2,3-BPG expression, may fail to protect sensitive brain tissue from subtly reduced O2 levels, in turn resulting in increased numbers of activated microglia and secretion of proinflammatory cytokines, ultimately promoting inflammaging and senescence of endothelial cells. Interventions to restore O2 levels directly or via increasing 2,3-BPG may help promote cognitive health in old age, but significant work to quantify the degree of reduced O2 during aging in mammals, and especially humans, needs to be pursued.
Collapse
Affiliation(s)
- James W Larrick
- Panorama Research Institute and Regenerative Sciences Institute, Sunnyvale, California, USA
| | - Jasmine W Larrick
- Division of Pulmonary, Critical Care and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Andrew R Mendelsohn
- Panorama Research Institute and Regenerative Sciences Institute, Sunnyvale, California, USA
| |
Collapse
|