1
|
Wen Z, Zhang W, Wu W. The latest applications of exosome-mediated drug delivery in anticancer therapies. Colloids Surf B Biointerfaces 2025; 249:114500. [PMID: 39799609 DOI: 10.1016/j.colsurfb.2025.114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/29/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
In recent years, the significant role of anticancer drugs in cancer treatment has garnered considerable attention. However, the application of these drugs is largely limited by their short half-life in blood circulation, low cellular uptake efficiency, and off-target effects. Exosomes, which serve as crucial messengers in intercellular communication, exhibit unique advantages in molecular delivery compared to traditional synthetic carriers, thereby offering new possibilities for modern drug delivery systems. Exosomes possess organotropic functions and are naturally produced by cells, making them promising candidates for natural drug delivery systems with organotropic properties and minimal side effects. These naturally derived carriers can achieve stable, efficient, and selective delivery of anticancer drugs, thereby enhancing the efficacy and potential of anticancer agents in cancer immunotherapy. This review provides a concise overview of the unique characteristics of exosomes related to anticancer drug delivery, strategies for utilizing exosomes as carriers in cancer therapy, and the latest advancements in the field.
Collapse
Affiliation(s)
- Zhiwei Wen
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Wei Zhang
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Wei Wu
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
2
|
Zhang X, Cao Y, Wang M, Li Y, Yin H, Ni H, Yang S, Yu F, Yang J, Peng L, Hu M, Li D, Liu D. Primary Cilia Regulate the Homeostasis and Regeneration of the Stem Cell Niche in the Tooth. J Cell Physiol 2025; 240:e31517. [PMID: 39734274 DOI: 10.1002/jcp.31517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 12/31/2024]
Abstract
Primary cilia, functioning as crucial hubs for signal sensing and transduction, are integral to the development and maintenance of homeostasis across various organs. However, their roles in tooth homeostasis and repair remain inadequately understood. In this study, we reveal an indispensable role for primary cilia in regulating the homeostasis and regeneration of teeth, primarily through the regulation of cell proliferation. Using cilium-deficient mice, we demonstrate that disruption of ciliary homeostasis leads to abnormal tooth morphology, stunted growth and notably impaired tooth repair. RNA sequencing reveals a dysregulation in genes associated with various biological processes such as cell proliferation, differentiation, and cycle regulation. Furthermore, we show that cilium-deficient mice display reduced cell proliferation. Our findings highlight a critical function for primary cilia in the regulation of tooth homeostasis and regeneration and have important implications for the development of tooth regeneration therapies.
Collapse
Affiliation(s)
- Xinming Zhang
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yuxin Cao
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Mengge Wang
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, China
| | - Yujia Li
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Hanxiao Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hua Ni
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Song Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Fan Yu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jia Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lisu Peng
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Meilin Hu
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dayong Liu
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
- School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases Shijiazhuang, Shijiazhuang, China
| |
Collapse
|
3
|
Xiang M, Liu Y, Guo Q, Liao C, Xiao L, Xiang M, Guan X, Liu J. Metformin enhances the therapeutic effects of extracellular vesicles derived from human periodontal ligament stem cells on periodontitis. Sci Rep 2024; 14:19940. [PMID: 39198490 PMCID: PMC11358454 DOI: 10.1038/s41598-024-70688-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Metformin has shown outstanding anti-inflammatory and osteogenic abilities. Mesenchymal stem cell-derived extracellular vesicles (EVs) reveal promising therapeutic potency by carrying various biomolecules. This study explored the effects of metformin on the therapeutic potential of EVs derived from human periodontal ligament stem cells (PDLSCs) for periodontitis. PDLSCs were cultured in osteogenic medium with or without metformin, and the supernatant was then collected separately to extract EVs and metformin-treated EVs (M-EVs). After identifying the characteristics, we evaluated the anti-inflammatory and osteogenic effects of EVs and M-EVs in vivo and in vitro. Osteogenic differentiation of PDLSCs was markedly enhanced after metformin treatment, and the effect was dramatically inhibited by GW4896, an inhibitor of EVs' secretion. Metformin significantly increased EVs' yields and improved their effects on cell proliferation, migration, and osteogenic differentiation. Moreover, metformin significantly enhanced the osteogenic ability of EVs on inflammatory PDLSCs. Animal experiments revealed that alveolar bone resorption was dramatically reduced in the EVs and M-EVs groups when compared to the periodontitis group, while the M-EVs group showed the lowest levels of alveolar bone loss. Metformin promoted the osteogenic differentiation of PDLSCs partly through EVs pathway and significantly enhanced the secretion of PDLSCs-EVs with superior pro-osteogenic and anti-inflammatory potential, thus improving EVs' therapeutic potential on periodontitis.
Collapse
Affiliation(s)
- Mingli Xiang
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Yulin Liu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Qiushuang Guo
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Meiling Xiang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Jianguo Liu
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China.
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China.
| |
Collapse
|
4
|
Ning X, Liu R, Huang Y, Huang Z, Li H, Li Q, Sheng Z, Wu J. Dental Stem Cell-Derived Exosomes: A Review of Their Isolation, Classification, Functions, and Mechanisms. Stem Cells Int 2024; 2024:2187392. [PMID: 39184549 PMCID: PMC11343633 DOI: 10.1155/2024/2187392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
The scientific field concerned with the study of regeneration has developed rapidly in recent years. Stem cell therapy is a highly promising therapeutic modality for repairing tissue defects; however, several limitations exist, such as cytotoxicity, potential immune rejection, and ethical issues. Exosomes secreted by stem cells are cell-specific secreted vesicles that play a regulatory role in many biological functions in the human body; they not only have a series of functional roles of stem cells and exert the expected therapeutic effects, but they can also overcome the mass limitations of stem cells and are thus considered in the research as an alternative treatment strategy for stem cells. Since dental stem cell-derived exosomes (DSC-Exos) are easy to acquire and present modulating effects in several fields, including neurovascular regeneration and craniofacial soft and hard tissue regeneration processes, they are served as an emerging cell-free therapeutic strategy in various systematic diseases. There is a growing body of research on various types of DSC-Exos; however, they lack systematic elaboration and tabular summarization. Therefore, this review presents the isolation, characterization, and phenotypes of DSC-Exos and focuses on their current status of functions and mechanisms, as well as the multiple challenges prior to clinical applications.
Collapse
Affiliation(s)
- Xiner Ning
- Department of OrthodonticsSchool of StomatologyState Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesThe Fourth Military Medical University, Xi'an 710032, China
| | - Rui Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyNursing DepartmentSchool of StomatologyThe Fourth Military Medical University, Xi'an 710032, China
| | - Yingying Huang
- Department of OrthodonticsSchool of StomatologyState Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesThe Fourth Military Medical University, Xi'an 710032, China
| | - Zhilong Huang
- Department of OrthodonticsSchool of StomatologyState Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesThe Fourth Military Medical University, Xi'an 710032, China
| | - Haodi Li
- Department of OrthodonticsSchool of StomatologyState Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesThe Fourth Military Medical University, Xi'an 710032, China
| | - Qiqi Li
- Department of OrthodonticsSchool of StomatologyState Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesThe Fourth Military Medical University, Xi'an 710032, China
| | - Zengyan Sheng
- Department of OrthodonticsSchool of StomatologyState Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesThe Fourth Military Medical University, Xi'an 710032, China
| | - Junjie Wu
- Department of OrthodonticsSchool of StomatologyState Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesThe Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
5
|
Arpornmaeklong P, Boonyuen S, Apinyauppatham K, Pripatnanont P. Effects of Oral Cavity Stem Cell Sources and Serum-Free Cell Culture on Hydrogel Encapsulation of Mesenchymal Stem Cells for Bone Regeneration: An In Vitro Investigation. Bioengineering (Basel) 2024; 11:59. [PMID: 38247936 PMCID: PMC10812978 DOI: 10.3390/bioengineering11010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION To develop a stem cell delivery model and improve the safety of stem cell transplantation for bone regeneration, this study aimed to determine the effects of stem cell sources, serum-free cell culture, and hydrogel cell encapsulation on the growth and osteogenic differentiation of mesenchymal stem cells (MSCs) from the oral cavity. METHODS The study groups were categorized according to stem cell sources into buccal fat pad adipose (hBFP-ADSCs) (Groups 1, 4, and 7), periodontal ligament (hPDLSCs) (Groups 2, 5, and 8), and dental pulp-derived stem cells (hDPSCs) (Groups 3, 6, and 9). MSCs from each source were isolated and expanded in three types of sera: fetal bovine serum (FBS) (Groups 1-3), human serum (HS) (Groups 4-6), and synthetic serum (SS) (StemPro™ MSC SFM) (Groups 7-9) for monolayer (m) and hydrogel cell encapsulation cultures (e). Following this, the morphology, expression of MSC cell surface antigens, growth, and osteogenic differentiation potential of the MSCs, and the expression of adhesion molecules were analyzed and compared. RESULTS SS decreased variations in the morphology and expression levels of cell surface antigens of MSCs from three cell sources (Groups 7m-9m). The levels of osteoblastic differentiation of the hPDLSCs and hBFP-ADSCs were increased in SS (Groups 8m and 7m) and the cell encapsulation model (Groups 1e, 4e, 7e-9e), but the promoting effects of SS were decreased in a cell encapsulation model (Groups 7e-9e). The expression levels of the alpha v beta 3 (ITG-αVβ3) and beta 1 (ITG-β1) integrins in the encapsulated cells in FBS (Group 1e) were higher than those in the SS (Group 7e). CONCLUSIONS Human PDLSCs and BFP-ADSCs were the optimum stem cell source for stem cell encapsulation by using nanohydroxyapatite-calcium carbonate microcapsule-chitosan/collagen hydrogel in serum-free conditions.
Collapse
Affiliation(s)
- Premjit Arpornmaeklong
- Faculty of Dentistry, Thammasat University-Rangsit Campus, Pathum Thani 12121, Thailand;
| | - Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University-Rangsit Campus, Pathum Thani 12121, Thailand;
| | - Komsan Apinyauppatham
- Faculty of Dentistry, Thammasat University-Rangsit Campus, Pathum Thani 12121, Thailand;
| | | |
Collapse
|
6
|
Nasiri K, Jahri M, Kolahdouz S, Soleimani M, Makiya A, Saini RS, Merza MS, Yasamineh S, Banakar M, Yazdanpanah MH. MicroRNAs Function in Dental Stem Cells as a Promising Biomarker and Therapeutic Target for Dental Diseases. Mol Diagn Ther 2023; 27:703-722. [PMID: 37773247 DOI: 10.1007/s40291-023-00675-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/01/2023]
Abstract
Undifferentiated, highly proliferative, clonogenic, and self-renewing dental stem cells have paved the way for novel approaches to mending cleft palates, rebuilding lost jawbone and periodontal tissue, and, most significantly, recreating lost teeth. New treatment techniques may be guided by a better understanding of these cells and their potential in terms of the specificity of the regenerative response. MicroRNAs have been recognized as an essential component in stem cell biology due to their role as epigenetic regulators of the processes that determine stem cell destiny. MicroRNAs have been proven to be crucial in a wide variety of molecular and biological processes, including apoptosis, cell proliferation, migration, and necrocytosis. MicroRNAs have been recognized to control protein translation, messenger RNA stability, and transcription and have been reported to play essential roles in dental stem cell biology, including the differentiation of dental stem cells, the immunological response, apoptosis, and the inflammation of the dental pulp. Because microRNAs increase dental stem cell differentiation, they may be used in regenerative medicine to either preserve the stem cell phenotype or to aid in the development of tooth tissue. The development of novel biomarkers and therapies for dental illnesses relies heavily on progress made in our knowledge of the roles played by microRNAs in regulating dental stem cells. In this article, we discuss how dental stem cells and their associated microRNAs may be used to cure dental illness.
Collapse
Affiliation(s)
- Kamyar Nasiri
- Department of Dentistry, Islamic Azad University, Tehran, Iran
| | - Mohammad Jahri
- Dental Research Center, School of Dentistry, Shahid Beheshti, Research Institute of Dental Sciences, University of Medical Sciences, Tehran, Iran
| | | | | | - Ali Makiya
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Science, Mashhad, Iran
| | - Ravinder S Saini
- COAMS, King Khalid University, Abha, 62529, Kingdom of Saudi Arabia
| | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Morteza Banakar
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pediatric Dentistry, Faculty of Dentistry, Shahed University, Tehran, Iran.
| | | |
Collapse
|