1
|
ÖZDEMİR A, KARLI P, AVCI B. Do midkine levels in serum and follicular fluid affect IVF-ICSI outcome? JOURNAL OF HEALTH SCIENCES AND MEDICINE 2020. [DOI: 10.32322/jhsm.735162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
2
|
Zhao X, Du F, Liu X, Ruan Q, Wu Z, Lei C, Deng Y, Luo C, Jiang J, Shi D, Lu F. Brain-derived neurotrophic factor (BDNF) is expressed in buffalo (Bubalus bubalis) ovarian follicles and promotes oocyte maturation and early embryonic development. Theriogenology 2019; 130:79-88. [PMID: 30877846 DOI: 10.1016/j.theriogenology.2019.02.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/28/2019] [Accepted: 02/21/2019] [Indexed: 11/18/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) has been discovered and characterized for several decades, yet its expression pattern in non-neuronal tissues like ovary and potential mechanism during oocyte maturation are still poorly understood. Thus the present study was devised to determine the expression pattern and mechanism of BDNF during buffalo oocyte maturation. The results revealed that BDNF was presented at different stages of buffalo ovarian follicles as well as during oocyte maturation and early embryo development. BDNF's receptor p75 was detected in granulosa cells, cumulus cells, oocytes, and early embryos, while another receptor neurotrophic tyrosine kinase receptor, type2 (NTRK2) was only identified in granulosa cells and cumulus cells. To determine the effect of BDNF on oocyte maturation and early embryo development, different concentrations (0, 1, 10, 100 ng/mL) of BDNF were added into the in vitro maturation media, respectively. It was divulged that 10 ng/mL BDNF promoted the in vitro maturation rate of buffalo oocytes and the blastocysts rate of embryos cultured in vitro (P < 0.05). Then through using NTRK2 inhibitor K-252a, we found BDNF and its receptor NTRK2 in cumulus cells played an essential role during oocyte maturation. Moreover, to further investigate the underlying mechanism by which BDNF enhances oocyte maturation, RT-qPCR was performed. 10 ng/mL BDNF treatment could decrease the expression level of apoptosis-related genes CCASP9, FAS, up-regulate the expression level of receptor gene NTRK2, cell proliferation-related genes CCNB1, PCNA, gap junction-related genes GJA4, GJA1 as well as cumulus cells expansion-related genes HAS2, PTX3 and TNFAIP6 (P < 0.05). Altogether, our results showed for the first time that BDNF was expressed throughout buffalo ovarian follicle development, oocyte maturation and early embryogenesis. Furthermore, BDNF treatment could improve the efficiency of buffalo oocyte maturation through regulating genes expression in cumulus cells and then promote early embryo development.
Collapse
Affiliation(s)
- Xin Zhao
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530005, China
| | - Fengjiao Du
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530005, China; Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaolin Liu
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530005, China
| | - Qiuyan Ruan
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530005, China
| | - Zhulian Wu
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530005, China
| | - Chuan Lei
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530005, China
| | - Yanfei Deng
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530005, China
| | - Chan Luo
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530005, China
| | - Jianrong Jiang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530005, China
| | - Deshun Shi
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530005, China.
| | - Fenghua Lu
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
3
|
Current perspectives on in vitro maturation and its effects on oocyte genetic and epigenetic profiles. SCIENCE CHINA-LIFE SCIENCES 2018; 61:633-643. [PMID: 29569023 DOI: 10.1007/s11427-017-9280-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022]
Abstract
In vitro maturation (IVM), the maturation in culture of immature oocytes, has been used in clinic for more than 20 years. Although IVM has the specific advantages of low cost and minor side effects over controlled ovarian stimulation, the prevalence of IVM is less than 1% of routine in vitro fertilization and embryo transfer techniques in many reproductive centers. In this review, we searched the MEDLINE database for all full texts and/or abstract articles published in English with content related to oocyte IVM mainly between 2000 and 2016. Many different aspects of the IVM method may influence oocyte potential, including priming, gonadotrophin, growth factors, and culture times. The culture conditions of IVM result in alterations in the oocyte or cumulus cell transcriptome that are not observed under in vivo culture conditions. Additionally, epigenetic modifications, such as DNA methylation or acetylation, are also different between in vitro and in vivo cultured oocytes. In sum, current IVM technique is still not popular and requires more systematic and intensive research to improve its effects and applications. This review will help point our problems, supply evidence or clues for future improving IVM technique, thus assist patients for fertility treatment or preservation as an additional option.
Collapse
|
4
|
Cacialli P, D'Angelo L, de Girolamo P, Avallone L, Lucini C, Pellegrini E, Castaldo L. Morpho-Functional Features of the Gonads of Danio rerio: the Role of Brain-Derived Neurotrophic Factor. Anat Rec (Hoboken) 2017; 301:140-147. [PMID: 29024578 DOI: 10.1002/ar.23702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 01/07/2023]
Abstract
Zebrafish, a suitable and widely used teleost fish model in basic biomedical research, displays morphophysiological features of adult gonads that share some commonalities with those of mammalian species. In mammals, gametogenesis is regulated, among several factors, by brain-derived neurotrophic factor (BDNF). This neurotrophin has a well-established role in the developing and adult nervous system, as well as gonads development and functions in vertebrate species. We hypothesize that BDNF has a role also in the gonadal functions of zebrafish. At this purpose, we investigated BDNF and its receptors p75 and TrkB in the ovary and testis of adult zebrafish, kept under laboratory conditions. Our results display (1) the expression of BDNF mRNA and pro-BDNF protein outside of the nervous system, specifically in the ovary and testis; (2) the presence of pro-BDNF in primary oocytes and follicular layer, and p75 in follicular cells; (3) the localization of pro-BDNF in type B spermatogonia, and Sertoli cells in testis. Altogether, these data lead us to consider that BDNF is involved in the gonadal function of adult zebrafish, and mainly in the adult ovary. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 301:140-147, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pietro Cacialli
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1 Napoli, Italy.,UFR Sciences de la vie et de l'environnement, Université de Rennes 1, Campus de Beaulieu - Bâtiment 13 263 Avenue Général Leclerc - CS 74205, Rennes Cedex 35042, France
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1 Napoli, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1 Napoli, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1 Napoli, Italy
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1 Napoli, Italy
| | - Elisabeth Pellegrini
- UFR Sciences de la vie et de l'environnement, Université de Rennes 1, Campus de Beaulieu - Bâtiment 13 263 Avenue Général Leclerc - CS 74205, Rennes Cedex 35042, France
| | - Luciana Castaldo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1 Napoli, Italy
| |
Collapse
|
5
|
Zhang Q, Liu D, Zhang M, Li N, Lu S, Du Y, Chen ZJ. Effects of brain-derived neurotrophic factor on oocyte maturation and embryonic development in a rat model of polycystic ovary syndrome. Reprod Fertil Dev 2016; 28:1904-1915. [DOI: 10.1071/rd15131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/21/2015] [Indexed: 01/09/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is expressed extensively in the mammalian female reproductive system and has been implicated in the development of follicles and oocytes. However, BDNF expression patterns in the ovary and its effects on oocyte maturation and embryonic development in polycystic ovary syndrome (PCOS) have not been established. In the present study, we established a PCOS model by treating the rats with insulin and human chorionic gonadotropin (hCG). Rats treated with insulin + hCG had heavier bodyweight and ovarian weight, higher circulating concentrations of luteinising hormone (LH) and testosterone (T), and greater homeostatic model assessment of insulin resistance (HOMA-IR) values compared with control rats (P < 0.05). BDNF and its receptor tyrosine kinase type B (TrkB) were located in cyst walls, granulosa and theca cells, and BDNF protein levels were lower in ovaries of insulin + hCG-treated rats (P < 0.05). The rate of oocyte maturation and formation of blastocysts and morulae was greatest in rats treated with 5 ng mL–1 BDNF (P < 0.05) compared to other BDNF groups (1 and 10 ng mL–1) and the control. The control rats were also PCOS rats and were treated without BDNF. There were no significant differences in the rate of germinal vesicle breakdown (GVBD) and fertilisation among the various treatment groups (1, 5 and 10 ng mL–1) and the control group (P > 0.05). The results indicate that in vitro treatment with an appropriate concentration of BDNF not only promotes oocyte maturation, but also rescues embryonic development in rats treated with insulin + hCG as a model of PCOS.
Collapse
|
6
|
Abazari-Kia AH, Dehghani-Mohammadabadi M, Mohammadi-Sangcheshmeh A, Zhandi M, Salehi M. Regulation of embryonic development and apoptotic-related gene expression by brain-derived neurotrophic factor in two different culture conditions in ovine. Theriogenology 2015; 84:62-9. [DOI: 10.1016/j.theriogenology.2015.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/15/2015] [Accepted: 02/09/2015] [Indexed: 02/04/2023]
|
7
|
Ikeda S, Yamada M. Midkine and cytoplasmic maturation of mammalian oocytes in the context of ovarian follicle physiology. Br J Pharmacol 2014; 171:827-36. [PMID: 23889362 PMCID: PMC3925021 DOI: 10.1111/bph.12311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/12/2013] [Accepted: 07/21/2013] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Midkine (MK) was originally characterized as a member of a distinct family of neurotrophic factors functioning in the CNS. However, it was later discovered that MK is abundantly expressed in ovarian follicles. Since then, the physiological roles of this molecule in the ovary have been steadily investigated. During the in vitro maturation (IVM) of oocytes MK was shown to promote the cytoplasmic maturation of oocytes, as indicated by post-fertilization development. This effect of MK could be mediated via its pro-survival (anti-apoptotic) effects on the cumulus-granulosa cells that surround oocytes. The oocyte competence-promoting effects of MK are discussed in the context of the recently discovered involvement of MK in the full maturation of ovarian follicles. MK was at the frontline of a new paradigm for neurotrophic factors as oocytetrophic factors. MK may promote the developmental competence of oocytes via common signalling molecules with the other neurotrophic factor(s). Alternatively or concomitantly, MK may also interact with various transmembrane molecules on cumulus-granulosa cells, which are important for ovarian follicle growth, dominance and differentiation, and act as a unique pro-survival factor in ovarian follicles, such that MK promotes oocyte competence. MK, along with other ovarian neurotrophic factors, may contribute to the optimization of the IVM system. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
| | - Masayasu Yamada
- Laboratory of Reproductive Biology Graduate School of Agriculture, Kyoto UniversityKyoto, Japan
| |
Collapse
|
8
|
Anderson RA, Bayne RA, Gardner J, De Sousa PA. Brain-derived neurotrophic factor is a regulator of human oocyte maturation and early embryo development. Fertil Steril 2010; 93:1394-406. [DOI: 10.1016/j.fertnstert.2009.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/24/2009] [Accepted: 04/02/2009] [Indexed: 11/28/2022]
|
9
|
Linher K, Wu D, Li J. Glial cell line-derived neurotrophic factor: an intraovarian factor that enhances oocyte developmental competence in vitro. Endocrinology 2007; 148:4292-301. [PMID: 17540724 DOI: 10.1210/en.2007-0021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The success of early embryonic development depends on oocyte nuclear and cytoplasmic maturation. We have investigated whether glial cell line-derived neurotrophic factor (GDNF) affects the in vitro maturation (IVM) of porcine oocytes and their subsequent ability to sustain preimplantation embryo development. GDNF and both its coreceptors, GDNF family receptor alpha-1 (GFR alpha-1) and the rearranged during transformation (RET) receptor, were expressed in oocytes and their surrounding cumulus cells derived from small and large follicles. When included in IVM medium, GDNF significantly enhanced cumulus cell expansion of both small and large cumulus-oocyte complexes and increased the percentage of small follicle-derived oocytes maturing to the metaphase II stage, although nuclear maturation of large oocytes was not significantly affected. Examination of cyclin B1 protein expression as a measure of cytoplasmic maturation revealed that in the presence of GDNF, cyclin B1 levels were significantly increased in large follicle-derived oocytes, as well as in oocytes from small follicles to a level comparable to the untreated large group. After activation, a significantly higher percentage of both small and large oocytes that were matured in the presence of GDNF developed to the blastocyst stage compared with untreated controls. Indeed, GDNF enhanced the blastocyst rate of small oocytes to levels comparable to those obtained for large oocytes matured without GDNF. The effect of GDNF was specific; this was evident because its enhancement of nuclear maturation and embryo developmental potential was blocked by an antibody against GFR alpha-1. Our study provides the first functional evidence that GDNF affects oocyte maturation and preimplantation embryo developmental competence in a follicular stage-dependent manner. This finding may provide insights for improving the formulation of IVM culture systems, especially for oocytes from small follicles.
Collapse
Affiliation(s)
- Katja Linher
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|