Sundaramurthy P, Sreenivasan R, Shameer K, Gakkhar S, Sowdhamini R. HORIBALFRE program: Higher Order Residue Interactions Based ALgorithm for Fold REcognition.
Bioinformation 2011;
7:352-9. [PMID:
22355236 PMCID:
PMC3280490 DOI:
10.6026/97320630007352]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/24/2011] [Indexed: 11/23/2022] Open
Abstract
Understanding the functional and structural implication of a protein encoded in novel genes using function association or fold recognition approaches remains to be a challenging task in the current era of genomes, metagenomes and personal genomes. In an attempt to enhance potential-based fold-recognition methods in recognizing remote homology between proteins, we propose a new approach "Higher Order Residue Interaction Based ALgorithm for Fold REcognition (HORIBALFRE)". Higher order residue interactions refer to a class of interactions in protein structures mediated by C(α) or C(β) atoms within a pre-defined distance cut-off. Higher order residue interactions (pairwise, triplet and quadruplet interactions) play a vital role in attaining the stable conformation of a protein structure. In HORIBALFRE, we incorporated the potential contributions from two body (pairwise) interactions, three body (triplet interactions) and four-body (quadruple interaction) interactions, to implement a new fold recognition algorithm. Core of HORIBALFRE algorithm includes the potentials generated from a library of protein structure derived from manually curated CAMPASS database of structure based sequence alignment. We used Fischer's dataset, with 68 templates and 56 target sequences, derived from SCOP database and performed one-against-all sequence alignment using TCoffee. Various potentials were derived using custom scripts and these potentials were incorporated in the HORIBALFRE algorithm. In this manuscript, we report outline of a novel fold recognition algorithm and initial results. Our results show that inclusion of quadruplet class of higher order residue interaction improves fold recognition.
Collapse