1
|
Hirsch MG, Pal S, Rashidi Mehrabadi F, Malikic S, Gruen C, Sassano A, Pérez-Guijarro E, Merlino G, Sahinalp SC, Molloy EK, Day CP, Przytycka TM. Stochastic modeling of single-cell gene expression adaptation reveals non-genomic contribution to evolution of tumor subclones. Cell Syst 2025; 16:101156. [PMID: 39701099 PMCID: PMC11867576 DOI: 10.1016/j.cels.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/30/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
Cancer progression is an evolutionary process driven by the selection of cells adapted to gain growth advantage. We present a formal study on the adaptation of gene expression in subclonal evolution. We model evolutionary changes in gene expression as stochastic Ornstein-Uhlenbeck processes, jointly leveraging the evolutionary history of subclones and single-cell expression data. Applying our model to sublines derived from single cells of a mouse melanoma revealed that sublines with distinct phenotypes are underlined by different patterns of gene expression adaptation, indicating non-genetic mechanisms of cancer evolution. Sublines previously observed to be resistant to anti-CTLA4 treatment showed adaptive expression of genes related to invasion and non-canonical Wnt signaling, whereas sublines that responded to treatment showed adaptive expression of genes related to proliferation and canonical Wnt signaling. Our results suggest that clonal phenotypes emerge as the result of specific adaptivity patterns of gene expression. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- M G Hirsch
- National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Department of Computer Science, University of Maryland, College Park, MD 20742, USA
| | - Soumitra Pal
- Neurobiology Neurodegeneration and Repair Lab, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Farid Rashidi Mehrabadi
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Salem Malikic
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Charli Gruen
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Antonella Sassano
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (IIBM, CSIC-UAM), Madrid 28029, Spain
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - S Cenk Sahinalp
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Erin K Molloy
- Department of Computer Science, University of Maryland, College Park, MD 20742, USA; University of Maryland Institute for Advanced Computer Studies, College Park, MD 20742, USA
| | - Chi-Ping Day
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Teresa M Przytycka
- National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Kalra S, Lanno S, Sanchez G, Coolon JD. cis- and trans-regulatory contributions to a hierarchy of factors influencing gene expression variation. Commun Biol 2024; 7:1563. [PMID: 39587248 PMCID: PMC11589579 DOI: 10.1038/s42003-024-07255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
Gene expression variation results from numerous sources including genetic, environmental, life stage, and even the environment experienced by previous generations. While the importance of each has been demonstrated in diverse organisms, their relative contributions remain understudied because few investigations have simultaneously determined each within a single experiment. Here we quantified genome-wide gene expression traits in Drosophila, quantified the contribution of multiple different sources of trait variation and determined the molecular mechanisms underlying observed variation. Our results show that there is a clear hierarchy in our data with genome and developmental stage contributing on average considerably more than current and finally previous generation environmental effects. We also determined the role of cis and trans-regulatory changes across different sources of trait variation, highlighting their importance in adaptation and environmental responses and showing unexpectedly that transgenerational effects herein were predominantly associated with changes in trans-regulation.
Collapse
|
3
|
Hirsch M, Pal S, Mehrabadi FR, Malikic S, Gruen C, Sassano A, Pérez-Guijarro E, Merlino G, Sahinalp C, Molloy EK, Day CP, Przytycka TM. Stochastic modelling of single-cell gene expression adaptation reveals non-genomic contribution to evolution of tumor subclones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.588869. [PMID: 38712152 PMCID: PMC11071284 DOI: 10.1101/2024.04.17.588869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cancer progression is an evolutionary process driven by the selection of cells adapted to gain growth advantage. We present the first formal study on the adaptation of gene expression in subclonal evolution. We model evolutionary changes in gene expression as stochastic Ornstein-Uhlenbeck processes, jointly leveraging the evolutionary history of subclones and single-cell expression data. Applying our model to sublines derived from single cells of a mouse melanoma revealed that sublines with distinct phenotypes are underlined by different patterns of gene expression adaptation, indicating non-genetic mechanisms of cancer evolution. Interestingly, sublines previously observed to be resistant to anti-CTLA-4 treatment showed adaptive expression of genes related to invasion and non-canonical Wnt signaling, whereas sublines that responded to treatment showed adaptive expression of genes related to proliferation and canonical Wnt signaling. Our results suggest that clonal phenotypes emerge as the result of specific adaptivity patterns of gene expression.
Collapse
Affiliation(s)
- M.G. Hirsch
- National Library of Medicine, NIH, Bethesda, Maryland, USA
- Department of Computer Science, University of Maryland, College Park, Maryland USA
| | - Soumitra Pal
- Neurobiology Neurodegeneration and Repair Lab, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Farid Rashidi Mehrabadi
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer institute, NIH, Bethesda, Maryland, USA
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Salem Malikic
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer institute, NIH, Bethesda, Maryland, USA
| | - Charli Gruen
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Antonella Sassano
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (IIBM, CSIC-UAM), Madrid, Spain
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Cenk Sahinalp
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer institute, NIH, Bethesda, Maryland, USA
| | - Erin K. Molloy
- Department of Computer Science, University of Maryland, College Park, Maryland USA
- University of Maryland Institute for Advanced Computer Studies, College Park, Maryland USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
4
|
Bontonou G, Saint-Leandre B, Kafle T, Baticle T, Hassan A, Sánchez-Alcañiz JA, Arguello JR. Evolution of chemosensory tissues and cells across ecologically diverse Drosophilids. Nat Commun 2024; 15:1047. [PMID: 38316749 PMCID: PMC10844241 DOI: 10.1038/s41467-023-44558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024] Open
Abstract
Chemosensory tissues exhibit significant between-species variability, yet the evolution of gene expression and cell types underlying this diversity remain poorly understood. To address these questions, we conducted transcriptomic analyses of five chemosensory tissues from six Drosophila species and integrated the findings with single-cell datasets. While stabilizing selection predominantly shapes chemosensory transcriptomes, thousands of genes in each tissue have evolved expression differences. Genes that have changed expression in one tissue have often changed in multiple other tissues but at different past epochs and are more likely to be cell type-specific than unchanged genes. Notably, chemosensory-related genes have undergone widespread expression changes, with numerous species-specific gains/losses including novel chemoreceptors expression patterns. Sex differences are also pervasive, including a D. melanogaster-specific excess of male-biased expression in sensory and muscle cells in its forelegs. Together, our analyses provide new insights for understanding evolutionary changes in chemosensory tissues at both global and individual gene levels.
Collapse
Affiliation(s)
- Gwénaëlle Bontonou
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Bastien Saint-Leandre
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Tane Kafle
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tess Baticle
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Afrah Hassan
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - J Roman Arguello
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
5
|
Brown NC, Gordon B, McDonough-Goldstein CE, Misra S, Findlay GD, Clark AG, Wolfner MF. The seminal odorant binding protein Obp56g is required for mating plug formation and male fertility in Drosophila melanogaster. eLife 2023; 12:e86409. [PMID: 38126735 PMCID: PMC10834028 DOI: 10.7554/elife.86409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
In Drosophila melanogaster and other insects, the seminal fluid proteins (SFPs) and male sex pheromones that enter the female with sperm during mating are essential for fertility and induce profound post-mating effects on female physiology. The SFPs in D. melanogaster and other taxa include several members of the large gene family known as odorant binding proteins (Obps). Work in Drosophila has shown that some Obp genes are highly expressed in the antennae and can mediate behavioral responses to odorants, potentially by binding and carrying these molecules to odorant receptors. These observations have led to the hypothesis that the seminal Obps might act as molecular carriers for pheromones or other compounds important for male fertility, though functional evidence in any species is lacking. Here, we used functional genetics to test the role of the seven seminal Obps in D. melanogaster fertility and the post-mating response (PMR). We found that Obp56g is required for male fertility and the induction of the PMR, whereas the other six genes are dispensable. We found males lacking Obp56g fail to form a mating plug in the mated female's reproductive tract, leading to ejaculate loss and reduced sperm storage, likely due to its expression in the male ejaculatory bulb. We also examined the evolutionary history of these seminal Obp genes, as several studies have documented rapid evolution and turnover of SFP genes across taxa. We found extensive lability in gene copy number and evidence of positive selection acting on two genes, Obp22a and Obp51a. Comparative RNAseq data from the male reproductive tract of multiple Drosophila species revealed that Obp56g shows high male reproductive tract expression in a subset of taxa, though conserved head expression across the phylogeny. Together, these functional and expression data suggest that Obp56g may have been co-opted for a reproductive function over evolutionary time.
Collapse
Affiliation(s)
- Nora C Brown
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Benjamin Gordon
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | | | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Geoffrey D Findlay
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
- Department of Biology, College of the Holy CrossWorcesterUnited States
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | | |
Collapse
|
6
|
Brown NC, Gordon B, McDonough-Goldstein CE, Misra S, Findlay GD, Clark AG, Wolfner MF. The seminal odorant binding protein Obp56g is required for mating plug formation and male fertility in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526941. [PMID: 36798169 PMCID: PMC9934574 DOI: 10.1101/2023.02.03.526941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In Drosophila melanogaster and other insects, the seminal fluid proteins (SFPs) and male sex pheromones that enter the female with sperm during mating are essential for fertility and induce profound post-mating effects on female physiology and behavior. The SFPs in D. melanogaster and other taxa include several members of the large gene family known as odorant binding proteins (Obps). Previous work in Drosophila has shown that some Obp genes are highly expressed in the antennae and can mediate behavioral responses to odorants, potentially by binding and carrying these molecules to odorant receptors. These observations have led to the hypothesis that the seminal Obps might act as molecular carriers for pheromones or other compounds important for male fertility in the ejaculate, though functional evidence in any species is lacking. Here, we used RNAi and CRISPR/Cas9 generated mutants to test the role of the seven seminal Obps in D. melanogaster fertility and the post-mating response (PMR). We found that Obp56g is required for male fertility and the induction of the PMR, whereas the other six genes had no effect on fertility when mutated individually. Obp56g is expressed in the male's ejaculatory bulb, an important tissue in the reproductive tract that synthesizes components of the mating plug. We found males lacking Obp56g fail to form a mating plug in the mated female's reproductive tract, leading to ejaculate loss and reduced sperm storage. We also examined the evolutionary history of these seminal Obp genes, as several studies have documented rapid evolution and turnover of SFP genes across taxa. We found extensive lability in gene copy number and evidence of positive selection acting on two genes, Obp22a and Obp51a. Comparative RNAseq data from the male reproductive tract of multiple Drosophila species revealed that Obp56g shows high male reproductive tract expression only in species of the melanogaster and obscura groups, though conserved head expression in all species tested. Together, these functional and expression data suggest that Obp56g may have been co-opted for a reproductive function over evolutionary time.
Collapse
Affiliation(s)
- Nora C. Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Benjamin Gordon
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Present address: Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, United States
| | | | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Present address: University of Petroleum and Energy Studies, Dehradun, UK, India
| | - Geoffrey D. Findlay
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
- Department of Biology, College of the Holy Cross, Worcester, MA, United States
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|