1
|
Tharp O, Sansbury BM, Kmiec EB. CRISPR-directed gene-editing induces genetic rearrangement within the human globin gene locus. Gene 2024; 931:148879. [PMID: 39179185 DOI: 10.1016/j.gene.2024.148879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
CRISPR-Cas is a revolutionary technology but has already demonstrated significant feasibility for clinical and non-clinical applications. While the efficiency and precision of this remarkable genetic tool is unprecedented, unfortunately, a series of collateral genetic rearrangement have been reported in response to double-stranded DNA breakage. Once these molecular scissions occur, the cascade of DNA repair reactions can lead to genomic rearrangements especially if breakage takes place within a family of sequence related genes. Here, we demonstrate that CRISPR- directed gene editing near the sickle cell mutation site generates a curious genetic outcome; a footprint of the δ globin gene proximal to the CRISPR/Cas cut site(s). This rearrangement is not dependent on the presence of an exogenously added DNA template but is apparently dependent on a double strand break. Our results the highlight recombinational capacity of double strand breaks in human chromosomes where the aim is to edit a human gene.
Collapse
Affiliation(s)
- Olivia Tharp
- Department of Medical and Molecular Sciences, University of Delaware, 210 South College Ave, Newark Delaware, 19716, United States
| | - Brett M Sansbury
- Gene Editing Institute, ChristianaCare, Delaware 550 South College Avenue, Suite 208, Newark, Delaware 19713, United States
| | - Eric B Kmiec
- Gene Editing Institute, ChristianaCare, Delaware 550 South College Avenue, Suite 208, Newark, Delaware 19713, United States.
| |
Collapse
|
2
|
Advancement in CRISPR/Cas9 Technology to Better Understand and Treat Neurological Disorders. Cell Mol Neurobiol 2023; 43:1019-1035. [PMID: 35751791 DOI: 10.1007/s10571-022-01242-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Neurological disorders have complicated pathophysiology that may involve several genetic mutations. Conventional treatment has limitations as they only treat apparent symptoms. Although, personalized medicine is emerging as a promising neuro-intervention, lack of precision is the major pitfall. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system is evolving as a technological platform that may overcome the therapeutic limitations towards precision medicine. In the future, targeting genes in neurological disorders may be the mainstay of modern therapy. The present review on CRISPR/Cas9 and its application in various neurological disorders may provide a platform for its future clinical relevance towards developing precise and personalized medicine.
Collapse
|
3
|
Transposase-CRISPR mediated targeted integration (TransCRISTI) in the human genome. Sci Rep 2022; 12:3390. [PMID: 35232993 PMCID: PMC8888626 DOI: 10.1038/s41598-022-07158-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022] Open
Abstract
Various methods have been used in targeted gene knock-in applications. CRISPR-based knock-in strategies based on homology-independent repair pathways such as CRISPR HITI have been shown to possess the best efficiency for gene knock-in in mammalian cells. However, these methods suffer from the probability of plasmid backbone insertion at the target site. On the other hand, studies trying to combine the targeting ability of the Cas9 molecule and the excision/integration capacity of the PB transposase have shown random integrations. In this study, we introduce a new homology-independent knock-in strategy, Transposase-CRISPR mediated Targeted Integration (TransCRISTI), that exploits a fusion of Cas9 nuclease and a double mutant piggyBac transposase. In isogenic mammalian cell lines, we show that the TransCRISTI method demonstrates higher efficiency (72%) for site-specific insertions than the CRISPR HITI (44%) strategy. Application of the TransCRISTI method resulted in site-directed integration in 4.13% and 3.69% of the initially transfected population in the human AAVS1and PML loci, respectively, while the CRISPR HITI strategy resulted in site-directed integration in the PML locus in only 0.6% of cells. We also observed lower off-target and random insertions in the TransCRISTI group than the CRISPR HITI group. The TransCRISTI technology represents a great potential for the accurate and high-efficiency knock-in of the desired transposable elements into the predetermined genomic locations.
Collapse
|
4
|
Rezazade Bazaz M, Dehghani H. From DNA break repair pathways to CRISPR/Cas-mediated gene knock-in methods. Life Sci 2022; 295:120409. [PMID: 35182556 DOI: 10.1016/j.lfs.2022.120409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
Various DNA breaks created via programmable CRISPR/Cas9 nuclease activity results in different intracellular DNA break repair pathways. Based on the cellular repair pathways, CRISPR-based gene knock-in methods can be categorized into two major strategies: 1) Homology-independent strategies which are targeted insertion events based on non-homologous end joining, and 2) Homology-dependent strategies which are targeted insertion events based on the homology-directed repair. This review elaborates on various gene knock-in methods in mammalian cells using the CRISPR/Cas9 system and in sync with DNA-break repair pathways. Gene knock-in methods are applied in functional genomics and gene therapy. To compensate or correct genetic defects, different CRISPR-based gene knock-in strategies can be used. Thus, researchers need to make a conscious decision about the most suitable knock-in method. For a successful gene-targeted insertion, some determinant factors should be considered like cell cycle, dominant DNA repair pathway, size of insertions, and donor properties. In this review, different aspects of each gene knock-in strategy are discussed to provide a framework for choosing the most appropriate gene knock-in method in different applications.
Collapse
Affiliation(s)
- Mahere Rezazade Bazaz
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
5
|
Fu YW, Dai XY, Wang WT, Yang ZX, Zhao JJ, Zhang JP, Wen W, Zhang F, Oberg KC, Zhang L, Cheng T, Zhang XB. Dynamics and competition of CRISPR-Cas9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing. Nucleic Acids Res 2021; 49:969-985. [PMID: 33398341 PMCID: PMC7826255 DOI: 10.1093/nar/gkaa1251] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Investigations of CRISPR gene knockout editing profiles have contributed to enhanced precision of editing outcomes. However, for homology-directed repair (HDR) in particular, the editing dynamics and patterns in clinically relevant cells, such as human iPSCs and primary T cells, are poorly understood. Here, we explore the editing dynamics and DNA repair profiles after the delivery of Cas9-guide RNA ribonucleoprotein (RNP) with or without the adeno-associated virus serotype 6 (AAV6) as HDR donors in four cell types. We show that editing profiles have distinct differences among cell lines. We also reveal the kinetics of HDR mediated by the AAV6 donor template. Quantification of T50 (time to reach half of the maximum editing frequency) indicates that short indels (especially +A/T) occur faster than longer (>2 bp) deletions, while the kinetics of HDR falls between NHEJ (non-homologous end-joining) and MMEJ (microhomology-mediated end-joining). As such, AAV6-mediated HDR effectively outcompetes the longer MMEJ-mediated deletions but not NHEJ-mediated indels. Notably, a combination of small molecular compounds M3814 and Trichostatin A (TSA), which potently inhibits predominant NHEJ repairs, leads to a 3-fold increase in HDR efficiency.
Collapse
Affiliation(s)
- Ya-Wen Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xin-Yue Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Wen-Tian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Zhi-Xue Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Juan-Juan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Wei Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Kerby C Oberg
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
- Tianjin Laboratory of Blood Disease Gene Therapy, Tianjin 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin 300020, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Department of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
6
|
Zuccaro MV, Xu J, Mitchell C, Marin D, Zimmerman R, Rana B, Weinstein E, King RT, Palmerola KL, Smith ME, Tsang SH, Goland R, Jasin M, Lobo R, Treff N, Egli D. Allele-Specific Chromosome Removal after Cas9 Cleavage in Human Embryos. Cell 2020; 183:1650-1664.e15. [PMID: 33125898 DOI: 10.1016/j.cell.2020.10.025] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/02/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022]
Abstract
Correction of disease-causing mutations in human embryos holds the potential to reduce the burden of inherited genetic disorders and improve fertility treatments for couples with disease-causing mutations in lieu of embryo selection. Here, we evaluate repair outcomes of a Cas9-induced double-strand break (DSB) introduced on the paternal chromosome at the EYS locus, which carries a frameshift mutation causing blindness. We show that the most common repair outcome is microhomology-mediated end joining, which occurs during the first cell cycle in the zygote, leading to embryos with non-mosaic restoration of the reading frame. Notably, about half of the breaks remain unrepaired, resulting in an undetectable paternal allele and, after mitosis, loss of one or both chromosomal arms. Correspondingly, Cas9 off-target cleavage results in chromosomal losses and hemizygous indels because of cleavage of both alleles. These results demonstrate the ability to manipulate chromosome content and reveal significant challenges for mutation correction in human embryos.
Collapse
Affiliation(s)
- Michael V Zuccaro
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA
| | - Jia Xu
- Genomic Prediction Inc., North Brunswick, NJ 08902, USA
| | - Carl Mitchell
- Columbia University Stem Cell Initiative, New York, NY 10032, USA
| | - Diego Marin
- Genomic Prediction Inc., North Brunswick, NJ 08902, USA
| | | | - Bhavini Rana
- Genomic Prediction Inc., North Brunswick, NJ 08902, USA; Department of Molecular Biosciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08854, USA
| | - Everett Weinstein
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Rebeca T King
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Katherine L Palmerola
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Morgan E Smith
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Stephen H Tsang
- Columbia University Stem Cell Initiative, New York, NY 10032, USA; Departments of Ophthalmology, Pathology & Cell Biology, Columbia University. New York, NY, 10032, USA
| | - Robin Goland
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Rogerio Lobo
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Nathan Treff
- Genomic Prediction Inc., North Brunswick, NJ 08902, USA; Department of Molecular Biosciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08854, USA
| | - Dieter Egli
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA; Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|