1
|
Zeng S, Lei S, Qu C, Wang Y, Teng S, Huang P. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia. Hum Genet 2023; 142:1677-1703. [PMID: 37878144 DOI: 10.1007/s00439-023-02610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Beta-thalassemia (β-thalassemia) is an autosomal recessive disorder caused by point mutations, insertions, and deletions in the HBB gene cluster, resulting in the underproduction of β-globin chains. The most severe type may demonstrate complications including massive hepatosplenomegaly, bone deformities, and severe growth retardation in children. Treatments for β-thalassemia include blood transfusion, splenectomy, and allogeneic hematopoietic stem cell transplantation (HSCT). However, long-term blood transfusions require regular iron removal therapy. For allogeneic HSCT, human lymphocyte antigen (HLA)-matched donors are rarely available, and acute graft-versus-host disease (GVHD) may occur after the transplantation. Thus, these conventional treatments are facing significant challenges. In recent years, with the advent and advancement of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) gene editing technology, precise genome editing has achieved encouraging successes in basic and clinical studies for treating various genetic disorders, including β-thalassemia. Target gene-edited autogeneic HSCT helps patients avoid graft rejection and GVHD, making it a promising curative therapy for transfusion-dependent β-thalassemia (TDT). In this review, we introduce the development and mechanisms of CRISPR/Cas9. Recent advances on feasible strategies of CRISPR/Cas9 targeting three globin genes (HBB, HBG, and HBA) and targeting cell selections for β-thalassemia therapy are highlighted. Current CRISPR-based clinical trials in the treatment of β-thalassemia are summarized, which are focused on γ-globin reactivation and fetal hemoglobin reproduction in hematopoietic stem cells. Lastly, the applications of other promising CRISPR-based technologies, such as base editing and prime editing, in treating β-thalassemia and the limitations of the CRISPR/Cas system in therapeutic applications are discussed.
Collapse
Affiliation(s)
- Shujun Zeng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuangyin Lei
- The Second Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Chao Qu
- The First Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yue Wang
- The Second Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuzhi Teng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China.
| | - Ping Huang
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
2
|
Zhang H, Yan J, Lu Z, Zhou Y, Zhang Q, Cui T, Li Y, Chen H, Ma L. Deep sampling of gRNA in the human genome and deep-learning-informed prediction of gRNA activities. Cell Discov 2023; 9:48. [PMID: 37193681 DOI: 10.1038/s41421-023-00549-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/21/2023] [Indexed: 05/18/2023] Open
Abstract
Life science studies involving clustered regularly interspaced short palindromic repeat (CRISPR) editing generally apply the best-performing guide RNA (gRNA) for a gene of interest. Computational models are combined with massive experimental quantification on synthetic gRNA-target libraries to accurately predict gRNA activity and mutational patterns. However, the measurements are inconsistent between studies due to differences in the designs of the gRNA-target pair constructs, and there has not yet been an integrated investigation that concurrently focuses on multiple facets of gRNA capacity. In this study, we analyzed the DNA double-strand break (DSB)-induced repair outcomes and measured SpCas9/gRNA activities at both matched and mismatched locations using 926,476 gRNAs covering 19,111 protein-coding genes and 20,268 non-coding genes. We developed machine learning models to forecast the on-target cleavage efficiency (AIdit_ON), off-target cleavage specificity (AIdit_OFF), and mutational profiles (AIdit_DSB) of SpCas9/gRNA from a uniformly collected and processed dataset by deep sampling and massively quantifying gRNA capabilities in K562 cells. Each of these models exhibited superlative performance in predicting SpCas9/gRNA activities on independent datasets when benchmarked with previous models. A previous unknown parameter was also empirically determined regarding the "sweet spot" in the size of datasets used to establish an effective model to predict gRNA capabilities at a manageable experimental scale. In addition, we observed cell type-specific mutational profiles and were able to link nucleotidylexotransferase as the key factor driving these outcomes. These massive datasets and deep learning algorithms have been implemented into the user-friendly web service http://crispr-aidit.com to evaluate and rank gRNAs for life science studies.
Collapse
Affiliation(s)
- Heng Zhang
- Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- AIdit Therapeutics, Hangzhou, Zhejiang, China
| | - Jianfeng Yan
- Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- AIdit Therapeutics, Hangzhou, Zhejiang, China
| | - Zhike Lu
- Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yangfan Zhou
- Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | | | | | - Yini Li
- Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Hui Chen
- AIdit Therapeutics, Hangzhou, Zhejiang, China
| | - Lijia Ma
- Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
CRISPR/Cas9, a promising approach for the treatment of β-thalassemia: a systematic review. Mol Genet Genomics 2023; 298:1-11. [PMID: 36403178 DOI: 10.1007/s00438-022-01978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
Abstract
The CRISPR/Cas9 technique is easily programmable, fast, more powerful, and efficient at generating a mutation compared to previous gene therapy methods. β-thalassemia is the most common autosomal recessive disorder worldwide. Appropriate genomic changes in the β gene can be modified to alleviate the symptoms of the disease using the CRISPR/Cas9 system. PubMed/Medline, Scopus, Web of Science, and SID databases were searched in Persian and English from February 2000 to September 2022. Finally, 39 articles had inclusion criteria which were reviewed by two separate individuals. Among the reviewed articles, articles were divided into three categories. In the first group, studies attemped to increase the expression of γ-globin and production of hemoglobin F. The strategy of second group of studies were the reduction of the α-globin chain to prevent hemolysis of RBCs by accumulation of excessive α-globins. The third group corrected the mutations causing β-thalassemia. Studies have shown that the genome of β-thalassemia patients can be modified using the CRISPR/Cas9 technique, and this approach might be promising for the treatment of β-thalassemia.
Collapse
|
4
|
Jie Q, Lei S, Qu C, Wu H, Liu Y, Huang P, Teng S. 利用CRISPR/Cas9基因编辑技术治疗β-地中海贫血的最新进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Antony JS, Daniel-Moreno A, Lamsfus-Calle A, Raju J, Kaftancioglu M, Ureña-Bailén G, Rottenberger J, Hou Y, Santhanakumaran V, Lee JH, Heumos L, Böhringer J, Krägeloh-Mann I, Handgretinger R, Mezger M. A Mutation-Agnostic Hematopoietic Stem Cell Gene Therapy for Metachromatic Leukodystrophy. CRISPR J 2021; 5:66-79. [PMID: 34882002 DOI: 10.1089/crispr.2021.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Metachromatic leukodystrophy (MLD) is a rare genetic disorder caused by mutations in the Arylsulfatase-A (ARSA) gene. The enzyme plays a key role in sulfatide metabolism in brain cells, and its deficiency leads to neurodegeneration. The clinical manifestations of MLD include stagnation and decline of motor and cognitive function, leading to premature death with limited standard treatment options. Here, we describe a mutation-agnostic hematopoietic stem and progenitor cell (HSPC) gene therapy using CRISPR-Cas9 and AAV6 repair template as a prospective treatment option for MLD. Our strategy achieved efficient insertions and deletions (>87%) and a high level of gene integration (>47%) at the ARSA locus in human bone marrow-derived HSPCs, with no detectable off-target editing. As a proof of concept, we tested our mutation-agnostic therapy in HSPCs derived from two MLD patients with distinct mutations and demonstrated restoration of ARSA enzyme activity (>30-fold improvement) equivalent to healthy adults. In summary, our investigation enabled a mutation-agnostic therapy for MLD patients with proven efficacy and strong potential for clinical translation.
Collapse
Affiliation(s)
- Justin S Antony
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen, Germany; University of Tübingen, Tübingen, Germany
| | - Alberto Daniel-Moreno
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen, Germany; University of Tübingen, Tübingen, Germany
| | - Andrés Lamsfus-Calle
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen, Germany; University of Tübingen, Tübingen, Germany
| | - Janani Raju
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen, Germany; University of Tübingen, Tübingen, Germany
| | - Merve Kaftancioglu
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen, Germany; University of Tübingen, Tübingen, Germany
| | - Guillermo Ureña-Bailén
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen, Germany; University of Tübingen, Tübingen, Germany
| | - Jennifer Rottenberger
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen, Germany; University of Tübingen, Tübingen, Germany
| | - Yujuan Hou
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen, Germany; University of Tübingen, Tübingen, Germany
| | - Vidiyaah Santhanakumaran
- Department of Pediatric Neurology, University Children's Hospital Tübingen, Germany; and University of Tübingen, Tübingen, Germany
| | - Jun-Hoe Lee
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Lukas Heumos
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Judith Böhringer
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen, Germany; University of Tübingen, Tübingen, Germany.,Department of Pediatric Neurology, University Children's Hospital Tübingen, Germany; and University of Tübingen, Tübingen, Germany
| | - Ingeborg Krägeloh-Mann
- Department of Pediatric Neurology, University Children's Hospital Tübingen, Germany; and University of Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen, Germany; University of Tübingen, Tübingen, Germany
| | - Markus Mezger
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen, Germany; University of Tübingen, Tübingen, Germany
| |
Collapse
|