1
|
Mattar CN, Chew WL, Lai PS. Embryo and fetal gene editing: Technical challenges and progress toward clinical applications. Mol Ther Methods Clin Dev 2024; 32:101229. [PMID: 38533521 PMCID: PMC10963250 DOI: 10.1016/j.omtm.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Gene modification therapies (GMTs) are slowly but steadily making progress toward clinical application. As the majority of rare diseases have an identified genetic cause, and as rare diseases collectively affect 5% of the global population, it is increasingly important to devise gene correction strategies to address the root causes of the most devastating of these diseases and to provide access to these novel therapies to the most affected populations. The main barriers to providing greater access to GMTs continue to be the prohibitive cost of developing these novel drugs at clinically relevant doses, subtherapeutic effects, and toxicity related to the specific agents or high doses required. In vivo strategy and treating younger patients at an earlier course of their disease could lower these barriers. Although currently regarded as niche specialties, prenatal and preconception GMTs offer a robust solution to some of these barriers. Indeed, treating either the fetus or embryo benefits from economy of scale, targeting pre-pathological tissues in the fetus prior to full pathogenesis, or increasing the likelihood of complete tissue targeting by correcting pluripotent embryonic cells. Here, we review advances in embryo and fetal GMTs and discuss requirements for clinical application.
Collapse
Affiliation(s)
- Citra N.Z. Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| | - Wei Leong Chew
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, 60 Biopolis St, Singapore, Singapore 138672
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| |
Collapse
|
2
|
Wang Y, Chen Y, Li C, Xiao Z, Yuan H, Zhang Y, Pang D, Tang X, Li M, Ouyang H. TERT Promoter Revertant Mutation Inhibits Melanoma Growth through Intrinsic Apoptosis. BIOLOGY 2022; 11:biology11010141. [PMID: 35053139 PMCID: PMC8773187 DOI: 10.3390/biology11010141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Simple Summary TERT -146 C>T frequently occurs in many cancer cells. Research targeting the telomerase reverse transcriptase (TERT) promoter contributes to a better understanding of cancer development and treatment. Many conventional cancer treatments aim to develop new drugs targeting TERT. Here, for TERT -146 we converted T to C. The proliferation, migration and invasion of melanoma cells in vitro, and the growth of the tumor in vivo were inhibited. Moreover, the downregulated protein expression of B-cell lymphoma 2 (Bcl-2) indicated that the TERT promoter revertant mutation abrogated the inhibitory effect of mutant TERT on apoptosis. These data elucidated the relationship between the TERT promoter revertant mutations and apoptosis for the first time, and also implied that TERT -146 may be a causal mutation of melanoma. This study provides a new insight into the TERT promoter revertant mutations and apoptosis. The TERT promoter provides preliminary validation of the potential tumor treatment. Abstract Human telomerase is a specialized DNA polymerase whose catalytic core includes both TERT and human telomerase RNA (hTR). Telomerase in humans, which is silent in most somatic cells, is activated to maintain the telomere length (TEL) in various types of cancer cells, including melanoma. In the vast majority of tumor cells, the TERT promoter is mutated to promote proliferation and inhibit apoptosis. Here, we exploited NG-ABEmax to revert TERT -146 T to -146 C in melanoma, and successfully obtained TERT promoter revertant mutant cells. These TERT revertant mutant cells exhibited significant growth inhibition both in vitro and in vivo. Moreover, A375−146C/C cells exhibited telomere shortening and the downregulation of TERT at both the transcription and protein levels, and migration and invasion were inhibited. In addition, TERT promoter revertant mutation abrogated the inhibitory effect of mutant TERT on apoptosis via B-cell lymphoma 2 (Bcl-2), ultimately leading to cell death. Collectively, the results of our work demonstrate that reverting mutations in the TERT promoter is a potential therapeutic option for melanoma.
Collapse
Affiliation(s)
- Yanbing Wang
- Key Laboratory for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.W.); (Y.C.); (Z.X.); (H.Y.); (Y.Z.); (D.P.); (X.T.)
| | - Yiwu Chen
- Key Laboratory for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.W.); (Y.C.); (Z.X.); (H.Y.); (Y.Z.); (D.P.); (X.T.)
| | - Chang Li
- College of Plant Sciences, Jilin University, Changchun 130062, China;
| | - Zhiwei Xiao
- Key Laboratory for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.W.); (Y.C.); (Z.X.); (H.Y.); (Y.Z.); (D.P.); (X.T.)
| | - Hongming Yuan
- Key Laboratory for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.W.); (Y.C.); (Z.X.); (H.Y.); (Y.Z.); (D.P.); (X.T.)
| | - Yuanzhu Zhang
- Key Laboratory for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.W.); (Y.C.); (Z.X.); (H.Y.); (Y.Z.); (D.P.); (X.T.)
| | - Daxin Pang
- Key Laboratory for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.W.); (Y.C.); (Z.X.); (H.Y.); (Y.Z.); (D.P.); (X.T.)
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute, Chongqing 401123, China
| | - Xiaochun Tang
- Key Laboratory for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.W.); (Y.C.); (Z.X.); (H.Y.); (Y.Z.); (D.P.); (X.T.)
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute, Chongqing 401123, China
| | - Mengjing Li
- Key Laboratory for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.W.); (Y.C.); (Z.X.); (H.Y.); (Y.Z.); (D.P.); (X.T.)
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute, Chongqing 401123, China
- Correspondence: (M.L.); (H.O.); Tel.: +86-0431-87836175 (H.O.)
| | - Hongsheng Ouyang
- Key Laboratory for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.W.); (Y.C.); (Z.X.); (H.Y.); (Y.Z.); (D.P.); (X.T.)
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute, Chongqing 401123, China
- Correspondence: (M.L.); (H.O.); Tel.: +86-0431-87836175 (H.O.)
| |
Collapse
|