1
|
Li H, Li Y, Yang L, Zhang D, Liu Z, Wang Y, Han R, Li G, Li Z, Tian Y, Kang X, Liu X. Identification of a Novel Lipid Metabolism-Associated Hepatic Gene Family Induced by Estrogen via ERα in Chicken ( Gallus gallus). Front Genet 2020; 11:271. [PMID: 32296460 PMCID: PMC7136477 DOI: 10.3389/fgene.2020.00271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 03/06/2020] [Indexed: 12/17/2022] Open
Abstract
Liver is the main organ of lipid metabolism in chicken, especially for laying hens. To explore the molecular mechanism of lipid metabolism in chicken, five novel genes discovered in chicken liver tissue were systematically studied. Bioinformatic analysis was used to analyze the gene characteristics. The expression patterns and regulatory molecular mechanism of the five genes were examined. Our results showed that all five novel genes contain a common NADP-binding site that belongs to the NADB-Rossmann superfamily, and the genes were designated NADB-LER1-5. Phylogenetic tree of the NADB-LERs gene family in different species suggested these five genes originated from the same ancestor. Tissue distributions showed that NADB-LER1-4 genes were highly expressed in lipid metabolism organs, including liver, kidney and duodenum, and that the NADB-LER5 gene was highly expressed in liver and kidney. The spatiotemporal expression indicated that the expression levels of NADB-LER1-5 genes in liver tissue were significantly greater in sexually mature hens than that of immature pullets (P-value ≤ 0.05). The expression levels of NADB-LER1-5 were significantly induced by 17β-estradiol in primary cultured chicken embryo hepatocytes (P-value ≤ 0.05), and 17β-estradiol regulated the expression of NADB-LER1-5 mediated by ERα. Individual assays verified that under induction of 17β-estradiol, the five novel genes were significantly upregulated, with subsequent alteration in serum TG, TC, and VLDLs in 10-week-old pullets. This study proved NADB-LERs family mainly expressed in liver, kidney, and duodenum tissues. 17β-estradiol induces the expression of NADB-LER1-5 genes predominantly mediated via ERα. They likely involved in lipid metabolism in the liver of chicken.
Collapse
Affiliation(s)
- Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanmin Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Liyu Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dingding Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ziming Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Li H, Deeb N, Zhou H, Ashwell CM, Lamont SJ. Chicken quantitative trait loci for growth and body composition associated with the very low density apolipoprotein-II gene. Poult Sci 2005; 84:697-703. [PMID: 15913180 DOI: 10.1093/ps/84.5.697] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Very low density apolipoprotein-II (apoVLDL-II) is a major constituent of very low density lipoprotein and is involved in lipid transportation in chickens. The current study was designed to investigate the associations of an apoVLDL-II gene polymorphism on chicken growth and body composition traits. The Iowa Growth and Composition Resource Population was established by crossing broiler sires with dams from 2 unrelated highly inbred lines (Leghorn and Fayoumi). The F1 birds were intercrossed, within dam line, to produce 2 related F2 populations. Body weight and body composition traits were measured in the F2 population. Primers for the 5'-flanking region in apoVLDL-II were designed from database chicken genomic sequence. Single nucleotide polymorphisms (SNP) between parental lines were detected by DNA sequencing, and PCR-RFLP methods were then developed to genotype SNP in the F2 population. There was no polymorphism in the 492 bp sequenced between broiler and Leghorn. The apoVLDL-II polymorphism between broiler and Fayoumi was associated with multiple traits of growth and body composition in the 148 male F2 individuals, including BW, breast muscle weight, drumstick weight, and tibia length. This research suggests that apoVLDL-II or a tightly linked gene has broad effects on growth and development in the chicken.
Collapse
Affiliation(s)
- H Li
- Department of Animal Science, Iowa State University, Ames, Iowa 50011-3150, USA
| | | | | | | | | |
Collapse
|
3
|
Tejada ML, Jia Z, May D, Deeley RG. Determinants of the DNA-binding specificity of the Avian homeodomain protein, AKR. DNA Cell Biol 1999; 18:791-804. [PMID: 10541438 DOI: 10.1089/104454999314935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AKR (Avian Knotted-Related) was the first example of a vertebrate homeodomain protein with a highly divergent Ile residue at position 50 of the DNA-recognition helix. The protein was cloned from a liver cDNA expression library of a day-9 chick embryo by virtue of its ability to bind to the F' site in the proximal promoter of the avian apoVLDLII gene. Expression of the apoVLDLII gene is completely estrogen dependent, and mutation or deletion of the F' site decreases estrogen inducibility 5- to 10-fold. Subsequent data indicated that AKR is capable of repressing the hormone responsiveness of the apoVLDLII promoter, specifically through binding to F'. Involvement of the F' site in the hormone-dependent activation of apoVLDLII gene expression, as well as AKR-mediated repression, strongly suggests that both positive and negative regulatory factors interact with this site. Although several mammalian proteins have now been isolated whose homeodomains share many of the structural features of AKR, including the Ile at position 50, little is known of their functions in vivo or the identities of the genes they regulate. Consequently, the elements through which they exert their effects and the structural determinants of their binding specificities remain largely uncharacterized. In this study, we defined the sequence specificity of binding by AKR using polymerase chain reaction-assisted optimal site selection and determined the affinity with which the protein binds to both the optimized site and the F' site. Additionally, we generated a three-dimensional model of the AKR homeodomain binding to its optimized site and probed the validity of the model by examining the consequences of mutating amino acid residues in recognition helix 3 and the N-terminal arm on the binding specificity of the homeodomain. Finally, we present evidence that the F' site itself may act as an estrogen response element (ERE) when in the vicinity of imperfect or canonical EREs and that AKR can repress hormone inducibility mediated via this site.
Collapse
Affiliation(s)
- M L Tejada
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
4
|
Shuler FD, Chu WW, Wang S, Evans MI. A composite regulatory element in the first intron of the estrogen-responsive very low density apolipoprotein II gene. DNA Cell Biol 1998; 17:689-97. [PMID: 9726251 DOI: 10.1089/dna.1998.17.689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During periods of egg laying in the chicken, when circulating levels of estrogen are increased, the liver-specific estrogen-dependent very low density apolipoprotein II (apoVLDLII) gene is expressed. This expression takes place primarily at the level of transcription, driven by two estrogen response elements that reside in the promoter. In transient transfection assays, expression is increased fourfold when the first intron is added to the promoter construct, indicating that 75% of the regulation comes from intron A. Using in vitro DNase I footprinting, six protein-binding sites were revealed throughout the first intron. The functional significance of these binding sites was evaluated by mutation and transient transfection. Two of the protein-binding regions were shown to increase transcription. Site-specific mutations introduced at either the +66 to +86 or +112 to +129 sites disrupted trans-factor binding and reduced the estrogen-dependent expression by 45% and 34%, respectively. A plasmid containing both mutations resulted in a 43% decrease in expression, indicating that the contributions of these regions are not additive. Competition with known sequences in electrophoretic mobility shift assays suggested that the +66 to +86 site binds a chicken member of the nuclear receptor transcription factor family.
Collapse
Affiliation(s)
- F D Shuler
- Department of Biochemistry, School of Medicine,. Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown 26506-9142, USA
| | | | | | | |
Collapse
|
5
|
Gauthier BR. Characterization of a novel liver-specific protein/DNA binding site in the human HMG CoA reductase promoter. Biochem Biophys Res Commun 1998; 247:280-6. [PMID: 9642117 DOI: 10.1006/bbrc.1998.8777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
These studies define a novel binding element (site C) within the human HMG CoA reductase promoter using a combination of in vitro DNase I footprinting and gel mobility shift assays. The factor interacting with site C appears to be restricted to the liver, indicating a possible role for this protein in regulating hepatic expression of the gene. Studies based on competitive gel mobility shift assays and transient co-transfection experiments performed using a reporter construct harbouring the promoter of HMG CoA reductase suggest that the protein binding to site C may belong to the C/EBP family of transcription factors. A factor interacting with this binding element was also identified in human liver nuclear protein extracts.
Collapse
Affiliation(s)
- B R Gauthier
- Cancer Research Laboratories and Department of Biochemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
6
|
Edinger RS, Mambo E, Evans MI. Estrogen-dependent transcriptional activation and vitellogenin gene memory. Mol Endocrinol 1997; 11:1985-93. [PMID: 9415402 DOI: 10.1210/mend.11.13.0037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The concept of hepatic memory suggests that a gene responds more rapidly to a second exposure of an inducer than it does during the initial activation. To determine how soon estrogen-dependent DNA/protein interactions occur during the primary response, in vivo dimethylsulfate footprinting was carried out using genomic DNA amplified by ligation-mediated PCR. When estrogen was added to disrupted cells from a hormone-naive liver, changes within and around the estrogen response elements occurred within seconds, indicating a direct and rapid effect on this estrogen-responsive promoter that had never before been activated. Because this effect was so rapid relative to the delayed onset of mRNA accumulation during the primary response, run-on transcription assays were used to determine the transcription profiles for four of the yolk protein genes during the primary and secondary responses to estrogen. As with the accumulation of mRNA, the onset of transcription was delayed for all of these genes after a primary exposure to estrogen. Interestingly, after the secondary exposure to estrogen, the vitellogenin I, vitellogenin II, and very low density apolipoprotein II genes displayed a more rapid onset of transcription, whereas the primary and secondary profiles of apolipoprotein B transcription in response to estrogen were identical. Because the apoB gene is constitutively expressed in the absence of estrogen, and the vitellogenins are quiescent before the administration of the hormone, hepatic memory most likely represents a relatively stable event in the transition to an active state of a gene that is committed for tissue-specific expression.
Collapse
Affiliation(s)
- R S Edinger
- Department of Biochemistry, School of Medicine, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown 26506-9142, USA
| | | | | |
Collapse
|
7
|
Nagasawa T, Takeda T, Minemura K, DeGroot LJ. Oct-1, silencer sequence, and GC box regulate thyroid hormone receptor beta1 promoter. Mol Cell Endocrinol 1997; 130:153-65. [PMID: 9220031 DOI: 10.1016/s0303-7207(97)00085-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thyroid hormone, acting through thyroid hormone receptors (TRs), plays a crucial role in brain development and its insufficiency results in irreversible brain damage. TR alpha mRNA is expressed continuously from early embryonic stages, but the level of TR beta1 mRNA in brain is more abundant in adult than in fetus. To identify important factors which regulate TR beta1 expression, we compared mouse fetal and adult brain nuclear extracts by DNase I footprinting and electrophoretic gel mobility shift assays (EMSA) of the TR beta1 promoter. We carried out transient transfection studies in COS 1 cells using the TR beta1 promoter fused to Luciferase gene, and used mutated promoter vectors and various expression vectors. In DNase I footprinting using the fragment -950 to -717, fetal brain nuclear extracts protected the areas -910 to -884 and -815 to -800 more than did adult extracts. In EMSA, proteins in fetal nuclear extracts bound to a silencer sequence (-924 to -916), GC box (-901 to -887), and E box (-810 to -805), more strongly than did proteins in adult brain extracts. The bands formed on GC box were not supershifted by Sp-1, Sp-2, Sp-3, Sp-4, EGR-1, or EGR-2 antibodies. Three bands were detected on the octamer binding site probe (-913 to -906) and one protein was supershifted by Oct-1 antibody. Adult brain extracts appear to contain more Oct-1 protein than do fetal extracts. The other two bands were more intense in fetal extracts than in adult extracts, but were not supershifted by either Oct-1 or Oct-2 antibodies. Mutation of the silencer response element, mutation of the GC box, and Oct-1 over expression in COS 1 cells increased TR beta1 promoter function as assayed by Luciferase reporter. Mutation of the octamer binding site, to which only Oct-1 bound in COS 1 cells, decreased Luciferase reporter activity. Thus the TR beta1 promoter was regulated negatively by the proteins bound to the silencer sequence and the GC box, and positively by Oct-1. Silencer and GC box binding proteins are more abundant in fetal brain, and Oct-1 is more abundant in adult brain. The results may be responsible for increased amounts of TR beta1 present in late fetal and adult brain.
Collapse
Affiliation(s)
- T Nagasawa
- Department of Medicine, The University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
8
|
Wallén MJ, Keinänen RA, Kulomaa MS. Two chicken repeat one (CR1) elements lacking a silencer-like region upstream of the chicken avidin-related genes Avr4 and Avr5. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1308:193-6. [PMID: 8809109 DOI: 10.1016/0167-4781(96)00119-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Two repetitive elements of the chicken CR1 family, each located in the 5' flanking region of the avidin-related genes Avr4 and Avr5, have been cloned and sequenced. Both elements are 721 bp in length with 72% identity to a CR1 consensus sequence. They had a 191 bp deletion in a region corresponding to the functional silencer regions previously detected within the CR1 elements upstream of the chicken lysozyme and apoVLDLII genes.
Collapse
Affiliation(s)
- M J Wallén
- Department of Biomedical Sciences, University of Tampere, Finland
| | | | | |
Collapse
|
9
|
Ryan AK, Tejada ML, May DL, Dubaova M, Deeley RG. Isolation and characterization of the chicken homeodomain protein AKR. Nucleic Acids Res 1995; 23:3252-9. [PMID: 7667102 PMCID: PMC307185 DOI: 10.1093/nar/23.16.3252] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Expression of the avian apoVLDLII gene is liver specific and completely dependent on estrogen. Previous analyses of protein binding sites in the apoVLDLII promoter revealed interactions between liver-enriched and ubiquitous factors at a location, site F', between nucleotides -229 and -260 relative to the major transcriptional start site. Site-directed mutagenesis of G residues contacted by these factors decreased expression from the promoter approximately 5-fold in the avian hepatoma cell line LMH2A. We have used this site to screen a cDNA expression library constructed from day 9 embryonic liver RNA. One of the two DNA binding factors isolated is a novel homeodomain protein. With the exception of the homeodomain itself, which is atypically located close to the protein N-terminus, the factor displays little similarity to any known DNA binding protein. Its homeodomain is most similar to that of the maize protein Knotted-1, while the most closely related vertebrate domain is that of the human proto-oncoprotein Pbx1. We demonstrate that the DNA binding specificity of the factor is consistent with its involvement in the ubiquitous complex formed with site F' and that it is capable of suppressing expression from the apoVLDLII promoter in short-term transfection experiments. These studies, combined with its DNA binding specificity, the tissue distribution of its mRNA and its developmental regulation, suggest a role as a negative regulator of gene expression in non-hepatic tissues and in the liver early during embryogenesis.
Collapse
Affiliation(s)
- A K Ryan
- Cancer Research Laboratories, Queen's University, Kingston, Canada
| | | | | | | | | |
Collapse
|