1
|
Wang C, Lei W, Jiang C, Du L, Huang X, Cui X, Gao D, Wang H. Exposure to tris (1,3-dichloro-2-propyl) phosphate affects the embryonic cardiac development of Oryzias melastigma. Heliyon 2024; 10:e25554. [PMID: 38327441 PMCID: PMC10847999 DOI: 10.1016/j.heliyon.2024.e25554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Tris (1,3-dichloro-2-propyl) phosphate (TDCPP) is a growing concern and may be a potential risk to marine environmental health due to its widespread usage and distribution. However, the toxic effects of TDCPP on cardiac development in marine fish have not been reported. In this study, Oryzias melastigma embryos were exposed to TDCPP at doses of 0, 0.04, 0.4, 4 and 40 μg/L from early embryogenesis to 10 days postfertilization (dpf). Then, the heart rate and sinus venosus-bulbus arteriosus (SV-BA) distance of the exposed embryos were measured at 5, 6, 8 and 10 dpf. Furthermore, alterations in the mRNA levels of the genes encoding cyclooxygenase-2 (COX-2), bone morphogenetic protein 4 (BMP4), fibroblast growth factor 8 (FGF8), and GATA-binding protein 4 (GATA4) were evaluated at 5, 6, 8 and 10 dpf. We found that the heart rate significantly increased in all TDCPP exposure groups at 10 dpf. The SV-BA distance significantly decreased in all TDCPP exposure groups at all developmental stages (except for the 0.4 μg/L group at 5 dpf and the 4 μg/L group at 10 dpf). The mRNA expression of COX-2 was downregulated at 5 dpf, BMP4 was downregulated at 5 and 6 dpf, FGF8 was downregulated at 5, 6 and 8 dpf, GATA4 was downregulated at 8 dpf, and GATA4 was upregulated at 10 dpf. These results indicate that the changes in heart rate and SV-BA distance might be accompanied by disturbances in the four genes involved in cardiac development. Our findings will help to illustrate the possible cardiac toxic effects of marine fish exposed to TDCPP.
Collapse
Affiliation(s)
- Chenshi Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Wei Lei
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian, China
- Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen, China
| | - Chengchen Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Lichao Du
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xindi Huang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xiaoyu Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Dongxu Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Hua Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| |
Collapse
|
2
|
Yuan J, Deng Y, Zhang Y, Gan X, Gao S, Hu H, Hu S, Hu J, Liu H, Li L, Wang J. Bmp4 inhibits goose granulosa cell apoptosis via PI3K/AKT/Caspase-9 signaling pathway. Anim Reprod Sci 2018; 200:86-95. [PMID: 30522702 DOI: 10.1016/j.anireprosci.2018.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/29/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
Abstract
Bone morphogenetic protein 4 (BMP4) has an important role in regulating cellular proliferation, differentiation and apoptosis. It, however, is still unclear as to the mechanisms by which BMP4 regulates the apoptosis of granulosa cells (GCs) in geese. In the present study, there was cloning of the full-length coding sequence of goose BMP4 gene, which consisted of 1212 nucleotides encoding 403 amino acids. Its deduced amino acid sequence comprised one signal peptide, one TGFβ pro-peptide and one mature peptide domain. Results from conducting the quantitative real-time PCR (qPCR) indicated the relative abundances of BMP4 mRNA in geese GCs increased gradually from the relative abundances in pre-hierarchical follicles that were 4 to 6 mm in diameter to that in the fifth largest (F5) follicle and then relative abundances of BMP4 mRNA decreased with further development as the largest (F1) follicle. Results from use of the TUNEL assay indicated that overexpression of the goose BMP4 gene suppressed GC apoptosis and this was confirmed when relative abundances of the CAD, Caspase-9 and Caspase-3 proteins were determined using western blotting. In addition, overexpression of the BMP4 gene induced phosphorylation of AKT, which was inhibited with use of the PI3K inhibitor, LY294002. Co-transfection of BMP4 and LY294002 resulted in increased relative abundances of Caspase-9 and CAD proteins but had no effect on that of Caspase-3. Taken together, these results suggested that expression of the BMP4 gene resulted in a reduction in Caspase-9 protein leading to inhibition of GC apoptosis via the PI3K/AKT signaling pathway in geese.
Collapse
Affiliation(s)
- Junsong Yuan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yingying Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Xiang Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Shanyan Gao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
3
|
Lenhart KF, Lin SY, Titus TA, Postlethwait JH, Burdine RD. Two additional midline barriers function with midline lefty1 expression to maintain asymmetric Nodal signaling during left-right axis specification in zebrafish. Development 2011; 138:4405-10. [PMID: 21937597 DOI: 10.1242/dev.071092] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Left-right (L/R) patterning is crucial for the proper development of all vertebrates and requires asymmetric expression of nodal in the lateral plate mesoderm (LPM). The mechanisms governing asymmetric initiation of nodal have been studied extensively, but because Nodal is a potent activator of its own transcription, it is also crucial to understand the regulation required to maintain this asymmetry once it is established. The 'midline barrier', consisting of lefty1 expression, is a conserved mechanism for restricting Nodal activity to the left. However, the anterior and posterior extremes of the LPM are competent to respond to Nodal signals yet are not adjacent to this barrier, suggesting that lefty1 is not the only mechanism preventing ectopic Nodal activation. Here, we demonstrate the existence of two additional midline barriers. The first is a 'posterior barrier' mediated by Bmp signaling that prevents nodal propagation through the posterior LPM. In contrast to previous reports, we find that Bmp represses Nodal signaling independently of lefty1 expression and through the activity of a ligand other than Bmp4. The 'anterior barrier' is mediated by lefty2 expression in the left cardiac field and prevents Nodal activation from traveling across the anterior limit of the notochord and propagating down the right LPM. Both barriers appear to be conserved across model systems and are thus likely to be present in all vertebrates.
Collapse
Affiliation(s)
- Kari F Lenhart
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
4
|
Guo X, Yan J, Liu S, Xiang B, Liu Y. Isolation and expression analyses of the Sox9a gene in triploid crucian carp. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:125-133. [PMID: 20467853 DOI: 10.1007/s10695-008-9209-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Accepted: 03/07/2008] [Indexed: 05/29/2023]
Abstract
To investigate the evolutional significance of Sox9 in fish, we isolated and characterized Sox9a cDNA and genomic clones in triploid crucian carp. The cDNA encoded a protein of 457 amino acids with an HMG box and showed more than 60% amino acid sequence identity with known vertebrate Sox9 proteins. Triploid crucian carp and vertebrate Sox9s showed similar gene structure, and two introns in the coding region were located at conserved positions. On the basis of the amino acid sequences, Sox9a can be categorized into the same subgroup of Sox-E proteins as Sox8, 9, and 10. Interestingly, the expression of triploid crucian carp Sox9a was predominantly observed not in the ovary but in the testis by Northern blot and RT-PCR analysis. The expression analysis of Sox9a suggested that it may seldom contribute to the formation of normal functions of spermatozoa, but it may play an important role in the development of testicular tubules. Besides the testicular expression, Sox9a was also shown to be expressed in many other tissues including the brain, kidney, and heart of triploid crucian carp, indicating that Sox9 may have unique functions in some specific tissues during development.
Collapse
Affiliation(s)
- Xinhong Guo
- College of Life Sciences, Hunan Normal University, ChangSha 410081, Hunan, P.R. China
| | | | | | | | | |
Collapse
|
5
|
Abstract
RATIONALE The proepicardial organ (PE) contributes to the cellular diversity of the developing heart by giving rise to the epicardium as well as vascular smooth muscle cells and fibroblasts. Despite the importance of these cells in cardiac development, function and regeneration, the signals required for the specification of the PE remain largely unexplored. OBJECTIVE We aim to identify the signaling molecules and transcription factors that regulate PE specification. METHODS AND RESULTS Here, we present the first genetic evidence that bone morphogenetic protein (Bmp) signaling in conjunction with the T-box transcription factor Tbx5a is essential for PE specification in zebrafish. Specifically, Bmp4 from the cardiac region, but not the liver bud, acting through the type I BMP receptor Acvr1l, is required for PE specification. By overexpressing a dominant-negative form of a Bmp receptor at various embryonic stages, we determined when Bmp signaling was required for PE specification. We also found that overexpression of bmp2b right before PE specification led to the ectopic expression of PE specific markers including tbx18. Furthermore, using loss-of-function approaches, we discovered a previously unappreciated PE specification role for Tbx5a at early somite stages; this role occurs earlier than, and appears to be independent from, the requirement for Bmp signaling in this process. CONCLUSION Altogether, these data lead us to propose that Tbx5a confers anterior lateral plate mesodermal cells the competence to respond to Bmp signals and initiate PE development.
Collapse
Affiliation(s)
- Jiandong Liu
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, Cardiovascular Research Institute, and Liver Center, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
6
|
Overlapping functions of Pea3 ETS transcription factors in FGF signaling during zebrafish development. Dev Biol 2010; 342:11-25. [PMID: 20346941 DOI: 10.1016/j.ydbio.2010.03.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 11/23/2022]
Abstract
Fibroblast growth factors (FGFs) are secreted molecules that activate the RAS/mitogen-activated protein kinase (MAPK) signaling pathway. In zebrafish development, FGF signaling is responsible for establishing dorsal polarity, maintaining the isthmic organizer, and cardiac ventricle formation. Because several ETS factors are known transcriptional mediators of MAPK signaling, we hypothesized that these factors function to mediate FGF signaling processes. In zebrafish, the simultaneous knock-down of three Pea3 ETS proteins, Etv5, Erm, and Pea3, produced phenotypes reminiscent of embryos deficient in FGF signaling. Morphant embryos displayed both cardiac and left/right patterning defects as well as disruption of the isthmic organizer. Furthermore, the expression of FGF target genes was abolished in Pea3 ETS depleted embryos. To understand how FGF signaling and ETS factors control gene expression, transcriptional regulation of dusp6 was studied in mouse and zebrafish. Conserved Pea3 ETS binding sites were identified within the Dusp6 promoter, and reporter assays showed that one of these sites is required for dusp6 induction by FGFs. We further demonstrated the interaction of Pea3 ETS factors with the Dusp6 promoter both in vitro and in vivo. These results revealed the requirement of ETS factors in transducing FGF signals in developmental processes.
Collapse
|
7
|
Fauny JD, Thisse B, Thisse C. The entire zebrafish blastula-gastrula margin acts as an organizer dependent on the ratio of Nodal to BMP activity. Development 2009; 136:3811-9. [DOI: 10.1242/dev.039693] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Formation of the vertebrate embryo is known to depend on the activity of organizing centers. The dorsal Spemann organizer is the source of growth factor antagonists that participate in the creation of signaling gradients. In various species, the existence of head, trunk and trunk-tail inducers has been proposed to explain the formation of different parts of the embryo along the anteroposterior (A/P) axis. In zebrafish, two organizing centers have been described, the dorsal and tail organizers, located at the dorsal and ventral gastrula margins, respectively. Here, we report that organizer functions are executed not only by the dorsal and ventral margins, but also by all parts of the blastula-gastrula margin. The position of different marginal territories along the dorsoventral axis defines the A/P nature of the structures they are able to organize. At the molecular level, we show that this organizing activity results from the simultaneous activation of BMP and Nodal signaling pathways. Furthermore, the A/P character of the organized structures is not defined by absolute levels but instead by the ratio of BMP and Nodal activities. Rather than resulting from the activity of discrete centers,organization of the zebrafish embryo depends on the activity of the entire margin acting as a continuous and global organizer that is established by a gradual ventral-to-dorsal modulation of the ratio of marginal BMP to Nodal activity.
Collapse
Affiliation(s)
- Jean-Daniel Fauny
- IGBMC, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries,BP10142, 67404 Illkirch Cedex, France
| | - Bernard Thisse
- IGBMC, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries,BP10142, 67404 Illkirch Cedex, France
- Department of Cell Biology, University of Virginia Health Sciences Center, PO Box 800732, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Christine Thisse
- IGBMC, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries,BP10142, 67404 Illkirch Cedex, France
- Department of Cell Biology, University of Virginia Health Sciences Center, PO Box 800732, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| |
Collapse
|
8
|
Liu JF, Guiguen Y, Liu SJ. Aromatase (P450arom) and 11beta-hydroxylase (P45011beta) genes are differentially expressed during the sex change process of the protogynous rice field eel, Monopterus albus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2009; 35:511-518. [PMID: 18807204 DOI: 10.1007/s10695-008-9255-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 07/27/2008] [Indexed: 05/26/2023]
Abstract
Steroids are known to play a crucial role in gonadal sex differentiation in many non-mammalian vertebrates, but also in the gonadal sex change of hermaphroditic teleosts. We investigated the expression of two genes encoding key steroidogenic enzymes, i.e., cytochrome P450 aromatase (P450arom) and cytochrome P45011beta-hydroxylase (P45011beta), during the sex change of the protogynous rice field eel, Monopterus albus. Using RT-PCR with degenerate primers, we cloned rice field eel homologous fragments for both genes (rcP450arom and rcP45011beta) as indicated by the high level of homology with P450arom and P45011beta sequences from various vertebrates. Gonadal expression of rcP450arom and rcP45011beta mRNA levels were then assessed during the sex change by semi-quantitative RT-PCR and a real-time RT-PCR. rcP450arom was predominantly expressed in ovary, much less in ovotestis, and barely in testis. Conversely, P45011beta was markedly up-regulated at the onset of testicular development. These findings underline that regulation of steroidogenesis is an important process in the sex change of protogynous rice field eel, and they clearly indicate that the concomitant down-regulation of P450arom and up-regulation of P45011beta are of pivotal importance to the sex change of this species.
Collapse
Affiliation(s)
- Ji-Fang Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | | | | |
Collapse
|
9
|
Weber S, Taylor JC, Winyard P, Baker KF, Sullivan-Brown J, Schild R, Knüppel T, Zurowska AM, Caldas-Alfonso A, Litwin M, Emre S, Ghiggeri GM, Bakkaloglu A, Mehls O, Antignac C, Network E, Schaefer F, Burdine RD. SIX2 and BMP4 mutations associate with anomalous kidney development. J Am Soc Nephrol 2008; 19:891-903. [PMID: 18305125 DOI: 10.1681/asn.2006111282] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Renal hypodysplasia (RHD) is characterized by reduced kidney size and/or maldevelopment of the renal tissue following abnormal organogenesis. Mutations in renal developmental genes have been identified in a subset of affected individuals. Here, we report the first mutations in BMP4 and SIX2 identified in patients with RHD. We detected 3 BMP4 mutations in 5 RHD patients, and 3 SIX2 mutations in 5 different RHD patients. Overexpression assays in zebrafish demonstrated that these mutations affect the function of Bmp4 and Six2 in vivo. Overexpression of zebrafish six2.1 and bmp4 resulted in dorsalization and ventralization, respectively, suggesting opposing roles in mesendoderm formation. When mutant constructs containing the identified human mutations were overexpressed instead, these effects were attenuated. Morpholino knockdown of bmp4 and six2.1 affected glomerulogenesis, suggesting specific roles for these genes in the formation of the pronephros. In summary, these studies implicate conserved roles for Six2 and Bmp4 in the development of the renal system. Defects in these proteins could affect kidney development at multiple stages, leading to the congenital anomalies observed in patients with RHD.
Collapse
Affiliation(s)
- Stefanie Weber
- Pediatric Nephrology, University Children's Hospital Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu J, Liu S, Tao M, Li W, Liu Y. Isolation and expression analysis of testicular type Sox9b in allotetraploid fish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:329-34. [PMID: 17245533 DOI: 10.1007/s10126-006-6123-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 11/08/2006] [Indexed: 05/13/2023]
Abstract
We isolated a Sox9 homologue, termed Sox9b, from adult allotetraploids. On the basis of the HMG-box amino acid sequences, Sox9b can be categorized into the same subgroup of Sox-E proteins as SOX8, 9, and 10. Interestingly, Northern and Southern hybridization demonstrated that Sox9b was highly expressed in the testis but at lower levels in the heart and brain, while no expression of Sox9b mRNA was discovered in the ovary of adult allotetraploids. Two transcripts of Sox9 (2.1 kb and 1.7 kb) with overlapping expression were observed for the first time in teleosts. These results indicated that allotetraploid Sox9b might be involved in gonadal development of male allotetraploids. In addition, the diverse tissue-specific expression profiles of Sox9b provided significant molecular evidence for the lineage-specific subfunction partitioning of Sox9 genes.
Collapse
Affiliation(s)
- Jifang Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Shih LJ, Lu YF, Chen YH, Lin CC, Chen JA, Hwang SPL. Characterization of the agr2 gene, a homologue of X. laevis anterior gradient 2, from the zebrafish, Danio rerio. Gene Expr Patterns 2006; 7:452-60. [PMID: 17175205 DOI: 10.1016/j.modgep.2006.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 10/23/2006] [Accepted: 11/06/2006] [Indexed: 01/23/2023]
Abstract
We characterized a zebrafish (Danio rerio) anterior gradient 2 homologue (agr2) gene. agr2 contains an open reading frame of 513bp encoding 171 amino acids. Deduced amino acid sequence comparison showed that the zebrafish agr2 protein shares high (80-89%) amino acid sequence similarity with those homologues of anterior gradient 2 (HAGR2, MAgr2, Tagr2, and Sagr2) from the human, mouse, pufferfish, and Atlantic salmon, while sharing less (67-71%) sequence similarity with those anterior gradient 2 genes (XAG-2, XAG-1, XAgr2, MAgr3, and HAGR3) from Xenopus laevis, mouse, and human. Both phylogenetic and syntenic analyses indicate that zebrafish agr2 is the orthologue of human AGR2 and mouse Agr2 genes. Whole-mount in situ hybridization indicated that zebrafish agr2 is expressed in most organs, such as epidermis, olfactory bulbs, otic vesicles, pharynx, esophagus, pneumatic duct, swim bladder, and intestine, which contain mucus-secreting cells. Moreover, semi-quantitative RT-PCR demonstrated agr2 is expressed in the gill, pharynx/esophagus, swim bladder/pneumatic duct, and intestine in the adult fish. In contrast, Xenopus anterior gradient 2 homologues are mainly expressed in ectoderm-derived organs including the cement gland and otic vesicles, while human and mouse anterior gradient 2 orthologues are mainly distributed in endoderm-derived organs including the trachea, lungs, stomach, intestines, and colon.
Collapse
Affiliation(s)
- Li-Jane Shih
- Institute of Cellular and Organismic Biology (formerly the Institute of Zoology), Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
12
|
Kuo MW, Postlethwait J, Lee WC, Lou SW, Chan WK, Chung BC. Gene duplication, gene loss and evolution of expression domains in the vertebrate nuclear receptor NR5A (Ftz-F1) family. Biochem J 2005; 389:19-26. [PMID: 15725073 PMCID: PMC1184535 DOI: 10.1042/bj20050005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fushi tarazu factor 1 (Ftz-F1, NR5A) is a zinc-finger transcription factor that belongs to the nuclear receptor superfamily and regulates genes that are involved in sterol and steroid metabolism in gonads, adrenals, liver and other tissues. To understand the evolutionary origins and developmental genetic relationships of the Ftz-F1 genes, we have cloned four homologous Ftz-f1 genes in zebrafish, called ff1a, ff1b, ff1c and ff1d. These four genes have different temporal and spatial expression patterns during development, indicating that they have distinct mechanisms of genetic regulation. Among them, the ff1a expression pattern is similar to mammalian Nr5a2, while the ff1b pattern is similar to that of mammalian Nr5a1. Genetic mapping experiments show that these four ff1 genes are located on chromosome segments conserved between the zebrafish and human genomes, indicating a common ancestral origin. Phylogenetic and conserved synteny analysis show that ff1a is the orthologue of NR5A2, and that ff1b and ff1d genes are co-orthologues of NR5A1 that arose by a gene-duplication event, probably a whole-genome duplication, in the ray-fin lineage, and each gene is located next to an NR6A1 co-orthologue as in humans, showing that the tandem duplication occurred before the divergence of human and zebrafish lineages. ff1c does not have a mammalian counterpart. Thus we have characterized the phylogenetic relationships, expression patterns and chromosomal locations of these Ftz-F1 genes, and have demonstrated their identities as NR5A genes in relation to the orthologous genes in other species.
Collapse
Affiliation(s)
- Ming-Wei Kuo
- *Institute of Molecular Biology, Academia Sinica, 128 Academia Road Section 2, Nankang, Taipei, Taiwan 115
- †Institute of Fisheries Science, National Taiwan University, 1 Roosevelt Road Section 4, Taipei, Taiwan 106
| | - John Postlethwait
- ‡Institute of Neuroscience, University of Oregon, Eugene, OR 97403, U.S.A
| | - Wen-Chih Lee
- *Institute of Molecular Biology, Academia Sinica, 128 Academia Road Section 2, Nankang, Taipei, Taiwan 115
| | - Show-Wan Lou
- †Institute of Fisheries Science, National Taiwan University, 1 Roosevelt Road Section 4, Taipei, Taiwan 106
| | - Woon-Khiong Chan
- §Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 119620
| | - Bon-chu Chung
- *Institute of Molecular Biology, Academia Sinica, 128 Academia Road Section 2, Nankang, Taipei, Taiwan 115
- To whom correspondence should be addressed (email )
| |
Collapse
|
13
|
diIorio PJ, Runko A, Farrell CA, Roy N. Sid4: A secreted vertebrate immunoglobulin protein with roles in zebrafish embryogenesis. Dev Biol 2005; 282:55-69. [PMID: 15936329 DOI: 10.1016/j.ydbio.2005.02.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2004] [Revised: 02/22/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
The small members of the immunoglobulin superfamily (IGSF) are a molecularly diverse group of proteins composed solely of immunoglobulin domains. They may be secreted or tethered to the cell mebrane via GPI linkages and are proposed to have important functions in vivo. However, very few small IGSFs have been functionally characterized. During an ongoing in situ hybridization analysis of expressed sequence tags in zebrafish we identified secreted immunoglobulin domain 4 (sid4), a gene encoding a soluble vertebrate protein composed solely of four immunoglobulin domains. Throughout development, sid4 is expressed in regions of the embryo undergoing active cell division and migration. Functional analysis using morpholino antisense oligonucleotides demonstrates that timing of gene expression is normal in morphants, but these embryos are smaller and exhibit defects in epiboly and patterning of axial and prechordal mesoderm. Analyses of chordin, pax2, krox20, and dlx2 expression in morphants demonstrate that early brain patterning is normal but later organization of hindbrain neurons and development of cranial neural crest are perturbed. Levels of apoptosis in morphants were normal prior to 90% epiboly, but were elevated after 10 h post-fertilization (hpf). Apoptosis does not account for early patterning defects of axial mesoderm, but likely contributes to overall reduction in embryo size. Phylogenetic analysis demonstrates that Sid4 is strikingly similar to the fibronectin binding Ig domains of Perlecan/HSPG2. Overall, our data demonstrate a fundamental role for sid4, possibly as a co-factor in extracellular matrix (ECM) interactions, in processes underlying tissue patterning and organogenesis in a vertebrate.
Collapse
Affiliation(s)
- P J diIorio
- Division of Diabetes, University of Massachusetts Medical School, 373 Plantation Street, Suite 218, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
14
|
Kuo MW, Lou SW, Postlethwait J, Chung BC. Chromosomal Organization, Evolutionary Relationship, and Expression of Zebrafish GnRH Family Members. J Biomed Sci 2005; 12:629-39. [PMID: 16132106 DOI: 10.1007/s11373-005-7457-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 05/17/2005] [Indexed: 11/24/2022] Open
Abstract
Multiple forms of gonadotropin-releasing hormone (GnRH) are found in different vertebrates. In this study, we have cloned cDNA encoding the full-length gnrh3 and gnrh2 from zebrafish brain and characterized their structure and expression patterns. We performed phylogenetic analysis and compared conserved syntenies in the region surrounding the GnRH genes from human, chicken, pufferfish, and zebrafish genores. The gnrh3 and gnrh2 genes were mapped to LG17 and LG21, respectively. The zebrafish genome appears to lack an ortholog to human GNRH1, and the human genome appears to lack an ortholog of gnrh3. Expression of gnrh3 began in the olfactory pit at 24-26 h postfertilization and expanded to the olfactory bulb during early larval stage. Expression of gnrh2 is always in the midbrain. In addition, GnRH is also expressed in boundary cells surrounding seminiferous cysts of the testis. Thus, this detailed phylogenetic, chromosomal comparison, and expression study defines the identity and the evolutionary relationship of two zebrafish gnrh genes. We propose a model describing the evolution of gnrh genes involving ancestral duplication of the genes followed by selective loss of one gene in some teleosts.
Collapse
Affiliation(s)
- Ming-Wei Kuo
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road Section 2, Nankang, Taipei, Taiwan
| | | | | | | |
Collapse
|
15
|
Shentu H, Wen HJ, Her GM, Huang CJ, Wu JL, Hwang SPL. Proximal upstream region of zebrafish bone morphogenetic protein 4 promoter directs heart expression of green fluorescent protein. Genesis 2004; 37:103-12. [PMID: 14595833 DOI: 10.1002/gene.10240] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We examined the activity of the bone morphogenetic protein 4 (BMP4) promoter in zebrafish embryos via transient and stable transgenic expression analyses in order to obtain a better understanding of the regulation of BMP4 tissue-specific expression. Transient expression studies showed that the 9.0-kb BMP4 promoter/upstream region drove green fluorescent protein (GFP) expression mainly in the heart. Deletion analyses indicated the existence of multiple regulatory elements in the 7.5-kb BMP4 promoter/proximal upstream region. In addition, a coinjection experiment further demonstrated the 2.4-kb Bgl II-Hind III DNA region contains major positive regulatory elements. In addition, stable transgenic lines were established to further confirm the heart-specificity of this segment in BMP4 promoter. The results showed that GFP was mainly localized in the myocardium of developing ventricles of 48-hpf (hours postfertilization), 72-hpf, and 100-hpf transgenic F(1) embryos. Together, these results indicate that the 7.5-kb BMP4 promoter/proximal upstream region specifically contains regulatory elements for BMP4 expression in the heart, while regulatory elements for other endogenous BMP4-expressing tissues may reside in more distal regions and/or in introns.
Collapse
Affiliation(s)
- Hsuan Shentu
- Institute of Zoology, Academia Sinica, Nankang, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
16
|
Trinh LA, Meyer D, Stainier DYR. The Mix family homeodomain gene bonnie and clyde functions with other components of the Nodal signaling pathway to regulate neural patterning in zebrafish. Development 2003; 130:4989-98. [PMID: 12930774 DOI: 10.1242/dev.00614] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mix family homeodomain proteins, such as Xenopus Mixer and zebrafish Bonnie and clyde (Bon), have been shown to regulate the formation of the endoderm and are likely to be transcriptional mediators of Nodal signaling. Here, we show that, in addition to its previously described role in endoderm formation, Bon also regulates the anteroposterior patterning of the neuroectoderm. bon-mutant embryos exhibit an anterior reduction of the neural plate. By using targeted injection of antisense morpholino oligonucleotides, we demonstrate that Bon is required in the axial mesoderm for anterior neural development. Consistent with these results, bon-mutant embryos show defects in axial mesoderm gene expression starting at mid-gastrulation stages. In addition, genetic analyses demonstrate a functional interaction during neural patterning between bon and two components of the Nodal signaling pathway, the nodal-related gene squint (sqt) and forkhead box H1 [foxh1; mutant locus schmalspur (sur)]. bon-/-;sqt-/- and bon-/-;sur-/- embryos exhibit neural patterning defects that are much more severe than those seen in the single mutants, suggesting that these genes function in parallel in this process. We also show that the severity of the neural patterning defects in the single- and double-mutant embryos correlates with the degree of reduction in expression of the Wnt antagonist gene dickkopf 1. Furthermore, bon-/-;sqt-/- and bon-/-;sur-/- embryos exhibit identical morphological and gene expression defects, suggesting, in part, that bon, sqt and sur (foxh1) play overlapping roles in neural patterning. Taken together, these results provide evidence for a complex genetic network in which bon functions both downstream of, and possibly in parallel to, Nodal signaling to regulate neural patterning via the modulation of mesendodermal gene expression.
Collapse
Affiliation(s)
- L A Trinh
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, University of California, San Francisco, San Francisco, CA 94143-0448, USA
| | | | | |
Collapse
|
17
|
Hsieh DJY, Liao CF. Zebrafish M2 muscarinic acetylcholine receptor: cloning, pharmacological characterization, expression patterns and roles in embryonic bradycardia. Br J Pharmacol 2002; 137:782-92. [PMID: 12411408 PMCID: PMC1573553 DOI: 10.1038/sj.bjp.0704930] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. A zebrafish M2 muscarinic acetylcholine receptor (mAChR) gene was cloned. It encodes 495 amino acids in a single exon. The derived amino acid sequence is 73.5% identical to its human homologue. 2. Competitive binding studies of the zebrafish M2 receptor and [(3)H]-NMS gave negative log dissociation constants (pK(i)) for each antagonist as follows: atropine (9.16)>himbacine (8.05)>/=4-DAMP (7.83)>AF-DX 116 (7.26)>/=pirenzepine (7.18)>/=tropicamide (6.97)>/=methoctramine (6.82)>/=p-F-HHSiD (6.67)>carbachol (5.20). The antagonist affinity profile correlated with the profile of the human M2 receptor, except for pirenzepine. 3. Reverse transcription polymerase chain reaction and Southern blotting analysis demonstrated that the M2 mAChR mRNA levels increased during the segmentation period (12 h post-fertilization; h.p.f.) in zebrafish. By whole-mount in situ hybridization, the M2 mAChR was first detectable in the heart, vagus motor ganglion, and vagus sensory ganglion at 30, 48 and 60 h.p.f., respectively. 4. The muscarinic receptor that mediates carbachol (CCh)-induced bradycardia was functionally mature at 72 h.p.f. The effect of CCh-induced bradycardia was antagonized by several muscarinic receptor antagonists with the order of potency (pIC(50) values): atropine (6.76)>methoctramine (6.47)>himbacine (6.10)>4-DAMP (5.72)>AF-DX 116 (4.77), however, not by pirenzepine, p-F-HHSiD, or tropicamide (<10 micro M). 5. The effect of CCh-induced bradycardia was abolished completely before 56 h.p.f. by M2 RNA interference, and the bradycardia effect gradually recovered after 72 h.p.f. The basal heart rate was increased in embryos injected with M2 mAChR morpholino antisense oligonucleotide (M2 MO) and the effect of CCh-induced bradycardia was abolished by M2 MO in a dose-dependent manner. In conclusion, the results suggest that the M2 mAChR inhibit basal heart rate in zebrafish embryo and the M2 mAChR mediates the CCh-induced bradycardia.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding, Competitive
- Bradycardia/chemically induced
- Bradycardia/physiopathology
- Carbachol
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- Dose-Response Relationship, Drug
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/physiopathology
- Gene Expression Regulation, Developmental/drug effects
- Heart Rate/drug effects
- Heart Rate/physiology
- L Cells
- Mice
- Microinjections
- Molecular Sequence Data
- Muscarinic Antagonists/metabolism
- Muscarinic Antagonists/pharmacology
- Oligonucleotides, Antisense/pharmacology
- RNA, Double-Stranded/administration & dosage
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/physiology
- Receptor, Muscarinic M2
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/genetics
- Receptors, Muscarinic/physiology
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/physiology
Collapse
Affiliation(s)
- Dennis Jine-Yuan Hsieh
- Graduate Institue of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Cell Signaling Laboratory, Institute of Zoology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ching-Fong Liao
- Graduate Institue of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Cell Signaling Laboratory, Institute of Zoology, Academia Sinica, Taipei, Taiwan, Republic of China
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Author for correspondence:
| |
Collapse
|
18
|
Shih LJ, Chen CA, Chen CP, Hwang SPL. Identification and characterization of bone morphogenetic protein 2/4 gene from the starfish Archaster typicus. Comp Biochem Physiol B Biochem Mol Biol 2002; 131:143-51. [PMID: 11818237 DOI: 10.1016/s1096-4959(01)00486-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A bone morphogenetic protein 2/4 (BMP2/4) gene has been cloned from the starfish, Archaster typicus, for the purpose of investigating the expression pattern of the BMP4 gene in echinoderm embryos which do not produce micromeres. The isolated gene (named AtBMP2/4) contained two exons that encoded the entire coding region. The deduced AtBMP2/4 protein sequence contained 509 amino acids. Sequence comparison showed that it shared high amino acid similarity with sea urchin BMP2/4 and Xenopus BMP2 and BMP4. Northern blot analyses indicated that AtBMP2/4 mRNA initially appears at the blastula stage and has a maximal expression level at the gastrula stage. Whole-mount in situ hybridization revealed that AtBMP2/4 mRNA is expressed in the archenteron, coelomic vesicles, and ectodermal cells of gastrula stage embryos. The observed spatial distribution pattern vastly differs from that of sea urchin SpBMP2/4, which is expressed mainly in the oral ectoderm region of the mesenchyme blastula and early gastrula embryos.
Collapse
Affiliation(s)
- L-J Shih
- Institute of Zoology, Academia Sinica, Nankang, Taipei, 11529 Taiwan, ROC
| | | | | | | |
Collapse
|
19
|
Chiang EF, Yan YL, Guiguen Y, Postlethwait J. Two Cyp19 (P450 aromatase) genes on duplicated zebrafish chromosomes are expressed in ovary or brain. Mol Biol Evol 2001; 18:542-50. [PMID: 11264405 DOI: 10.1093/oxfordjournals.molbev.a003833] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytochrome P450 aromatase (Cyp19) is an enzyme catalyzing the synthesis of estrogens, thereby controlling various physiological functions of estrogens. We isolated two cyp19 cDNAs, termed cyp19a and cyp19b, respectively, from zebrafish. These genes are located in linkage groups 18 and 25, respectively. Detailed gene mapping indicated that zebrafish linkage groups 18 and 25 may have arisen from the same ancestral chromosome by a chromosome duplication event. Cyp19a is expressed mainly in the follicular cells lining the vitellogenic oocytes in the ovary during vitellogenesis. Cyp19b is expressed abundantly in the brain, at the hypothalamus and ventral telencephalon, extending to the olfactory bulbs. The expression of duplicated cyp19 genes at two different tissues highlights the evolutionary significance of maintaining two active genes on duplicated zebrafish chromosomes for specific functions in the ovary and the brain.
Collapse
Affiliation(s)
- E F Chiang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
20
|
Chiang EF, Pai CI, Wyatt M, Yan YL, Postlethwait J, Chung B. Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev Biol 2001; 231:149-63. [PMID: 11180959 DOI: 10.1006/dbio.2000.0129] [Citation(s) in RCA: 236] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sox9 is a transcription factor required for cartilage formation and testis determination in mammals. We have cloned from zebrafish two sox9 genes, termed sox9a and sox9b. Gene phylogenies showed that both genes are orthologous to tetrapod SOX9 genes. Genetic mapping showed that these two loci reside on chromosome segments that were apparently duplicated in a large-scale genomic duplication event in ray fin fish phylogeny. Both Sox9a and Sox9b proteins bind to the HMG consensus DNA sequences in vitro. We tested different domains for transactivation potential and identified a potential activation domain located in the middle of both Sox9a and Sox9b. During embryogenesis, sox9a and sox9b expression patterns are distinct but overlap in some regions of the brain, head skeleton, and fins. Expression of sox9a/b correlates well with that of col2a1 in chondrogenic elements. In the adults, sox9a is expressed in many tissues including brain, muscle, fin, and testis, whereas sox9b expression is restricted to previtellogenic oocytes of the ovary. This expression pattern predicts that sox9a and sox9b may have unique functions in some specific tissues during development. The role of gene duplication for the evolution of developmental gene function is discussed.
Collapse
Affiliation(s)
- E F Chiang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Kim S, Karsi A, Dunham RA, Liu Z. The skeletal muscle alpha-actin gene of channel catfish (Ictalurus punctatus) and its association with piscine specific SINE elements. Gene 2000; 252:173-81. [PMID: 10903449 DOI: 10.1016/s0378-1119(00)00198-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The alpha-actin gene of channel catfish (Ictalurus punctatus) was cloned and sequenced. The gene has a similar organization and exhibited a high level of sequence similarity to those from other vertebrate animals. The upstream region of the alpha-actin gene included a TATA box, a CAAT box, three E-boxes, and a CArG box. Nested deletion segments containing these transcriptional motifs were fused to the reporter gene chloramphenicol acetyl transferase (CAT). Transfection of the clones into C2C12 cells indicated that all these motifs are required for transcriptional activities. The channel catfish alpha-actin gene is associated with two distinct short interspersed repetitive elements (SINEs). The first SINE element showed high levels of sequence similarity to the zebrafish Mermaid element, while the second SINE element is not similar to the Mermaid element except for an 8bp sequence CCCCGTGC suggesting their evolutionary linkage. However, the second SINE element appeared to co-exist with the Mermaid element in most cases and therefore was designated as the Merman element. Approximately 9000 copies and 1200 copies of the Mermaid and Merman elements exist per haploid channel catfish genome, respectively. BLAST searches indicated that both the Mermaid and the Merman elements were frequently associated with gene sequences, mostly those of aquatic animals, suggesting their evolutionary origin in association with aquatic organisms and their function in shaping the evolution of genomes in aquatic animals.
Collapse
Affiliation(s)
- S Kim
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Auburn University, 36849, Auburn, AL, USA
| | | | | | | |
Collapse
|
22
|
Hwang SL, Chen CA, Chen C. Sea urchin TgBMP2/4 gene encoding a bone morphogenetic protein closely related to vertebrate BMP2 and BMP4 with maximal expression at the later stages of embryonic development. Biochem Biophys Res Commun 1999; 258:457-63. [PMID: 10329409 DOI: 10.1006/bbrc.1999.0663] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have cloned a gene fragment (named TgBMP2/4) that encodes a protein homologous to vertebrate bone morphogenetic protein (BMP) 2 and BMP4 in the sea urchin Tripneustes gratilla. This peptide sequence contains 204 amino acids with 7 conserved cysteine residues at the C-terminus of the coding region and a cluster of basic amino acids that may serve as a signal for proteolytic cleavage. Sequence comparison and phylogenetic analyses reveal that TgBMP2/4 is closely related to vertebrate BMP2 and BMP4 as well as to amphioxus BMP2/4, with similarity levels ranging from 90% to 94% at the mature C-terminal domain. Northern blot analyses show that a 6.3-kb TgBMP2/4 mRNA appears first at the mesenchyme blastula stage and increases to a maximal level at the gastrula and pluteus stages. This expression pattern is different from that of a BMP2/4-related gene previously found in sea urchin.
Collapse
Affiliation(s)
- S L Hwang
- Institute of Zoology, Academia Sinica, Nankang, Taipei, Taiwan, 11529, Republic of China.
| | | | | |
Collapse
|