1
|
Han H, Lin T, Wang Z, Song J, Fang Z, Zhang J, You X, Du Y, Ye J, Zhou G. RNA-binding motif 4 promotes angiogenesis in HCC by selectively activating VEGF-A expression. Pharmacol Res 2023; 187:106593. [PMID: 36496136 DOI: 10.1016/j.phrs.2022.106593] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Increased angiogenesis in the liver plays a critical role in the progression of hepatocellular carcinoma (HCC). However, the molecular mechanism underlying increased angiogenesis in HCC is not well understood. Current study was designed to identify the potential angiogenic effect of RNA-binding motif 4 (RBM4)through a small-scale overexpression screening, followed by comparison of the expression level of RBM4 in cancer and adjacent tissues in multiple malignancies to explore the relationship between RBM4 and CD31 protein expression level and related clinical indicators, and understand the role of RBM4 in the hepatocellular carcinoma. To understand the specific mechanism of RBM4 in detail, transcriptome sequencing, mass spectrometry and multiple molecular cytological studies were performed. These cellular level results were verified by experiments in animal models of nude mice. The increased expression of RBM4 in cancer tissues, suggested its use as a prognostic biomarker. The RBM4 expression was found to be strongly correlated with tumor microvessel density. Mechanistically, RBM4 mediated its effects via interaction with HNRNP-M through the latter's WDR15 domain, which then stabilized RelA/p65 mRNA. Consequently, RBM4 induced the activation of the NF-kB signaling pathway, upregulating the expression of proangiogenic factor VEGF-A. The results confirmed the mechanism by which RBM4 promotes angiogenesis in hepatocellular carcinoma suggesting RBM4 as a crucial promoter of angiogenesis in HCC, helping understand regulation of NF-kB signaling in HCC.
Collapse
Affiliation(s)
- Hexu Han
- Department of Gastroenterology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Ting Lin
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu 226001, China
| | - Zhenyu Wang
- Department of pediatric surgery, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China
| | - Jingjing Song
- Department of Pediatrics, the Second Affiliated Hospital &Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China
| | - Ziyi Fang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China
| | - Jing Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China
| | - Xiaomin You
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China
| | - Yanping Du
- Department of Gastroenterology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Jun Ye
- Center for Translational Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China.
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China.
| |
Collapse
|
2
|
RNA-Binding Proteins in the Regulation of Adipogenesis and Adipose Function. Cells 2022; 11:cells11152357. [PMID: 35954201 PMCID: PMC9367552 DOI: 10.3390/cells11152357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
The obesity epidemic represents a critical public health issue worldwide, as it is a vital risk factor for many diseases, including type 2 diabetes (T2D) and cardiovascular disease. Obesity is a complex disease involving excessive fat accumulation. Proper adipose tissue accumulation and function are highly transcriptional and regulated by many genes. Recent studies have discovered that post-transcriptional regulation, mainly mediated by RNA-binding proteins (RBPs), also plays a crucial role. In the lifetime of RNA, it is bound by various RBPs that determine every step of RNA metabolism, from RNA processing to alternative splicing, nucleus export, rate of translation, and finally decay. In humans, it is predicted that RBPs account for more than 10% of proteins based on the presence of RNA-binding domains. However, only very few RBPs have been studied in adipose tissue. The primary aim of this paper is to provide an overview of RBPs in adipogenesis and adipose function. Specifically, the following best-characterized RBPs will be discussed, including HuR, PSPC1, Sam68, RBM4, Ybx1, Ybx2, IGF2BP2, and KSRP. Characterization of these proteins will increase our understanding of the regulatory mechanisms of RBPs in adipogenesis and provide clues for the etiology and pathology of adipose-tissue-related diseases.
Collapse
|
3
|
Wang Y, Yu Y, Pang Y, Yu H, Zhang W, Zhao X, Yu J. The distinct roles of zinc finger CCHC-type (ZCCHC) superfamily proteins in the regulation of RNA metabolism. RNA Biol 2021; 18:2107-2126. [PMID: 33787465 DOI: 10.1080/15476286.2021.1909320] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The zinc finger CCHC-type (ZCCHC) superfamily proteins, characterized with the consensus sequence C-X2-C-X4-H-X4-C, are accepted to have high-affinity binding to single-stranded nucleic acids, especially single-stranded RNAs. In human beings 25 ZCCHC proteins have been annotated in the HGNC database. Of interest is that among the family, most members are involved in the multiple steps of RNA metabolism. In this review, we focus on the diverged roles of human ZCCHC proteins on RNA transcription, biogenesis, splicing, as well as translation and degradation.
Collapse
Affiliation(s)
- Yishu Wang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yu Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yidan Pang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojun Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqi Zhang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Posttranscriptional regulation of human endogenous retroviruses by RNA-binding motif protein 4, RBM4. Proc Natl Acad Sci U S A 2020; 117:26520-26530. [PMID: 33020268 DOI: 10.1073/pnas.2005237117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human genome encodes for over 1,500 RNA-binding proteins (RBPs), which coordinate regulatory events on RNA transcripts. Most studies of RBPs have concentrated on their action on host protein-encoding mRNAs, which constitute a minority of the transcriptome. A widely neglected subset of our transcriptome derives from integrated retroviral elements, termed endogenous retroviruses (ERVs), that comprise ∼8% of the human genome. Some ERVs have been shown to be transcribed under physiological and pathological conditions, suggesting that sophisticated regulatory mechanisms to coordinate and prevent their ectopic expression exist. However, it is unknown how broadly RBPs and ERV transcripts directly interact to provide a posttranscriptional layer of regulation. Here, we implemented a computational pipeline to determine the correlation of expression between individual RBPs and ERVs from single-cell or bulk RNA-sequencing data. One of our top candidates for an RBP negatively regulating ERV expression was RNA-binding motif protein 4 (RBM4). We used photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation to demonstrate that RBM4 indeed bound ERV transcripts at CGG consensus elements. Loss of RBM4 resulted in an elevated transcript level of bound ERVs of the HERV-K and -H families, as well as increased expression of HERV-K envelope protein. We pinpointed RBM4 regulation of HERV-K to a CGG-containing element that is conserved in the LTRs of HERV-K-10, -K-11, and -K-20, and validated the functionality of this site using reporter assays. In summary, we systematically identified RBPs that may regulate ERV function and demonstrate a role for RBM4 in controlling ERV expression.
Collapse
|
5
|
Markus MA, Yang YHJ, Morris BJ. Transcriptome-wide targets of alternative splicing by RBM4 and possible role in cancer. Genomics 2016; 107:138-44. [PMID: 26898347 DOI: 10.1016/j.ygeno.2016.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 01/22/2016] [Accepted: 02/16/2016] [Indexed: 10/25/2022]
Abstract
This study determined transcriptome-wide targets of the splicing factor RBM4 using Affymetrix GeneChip(®) Human Exon 1.0 ST Arrays and HeLa cells treated with RBM4-specific siRNA. This revealed 238 transcripts that were targeted for alternative splicing. Cross-linking and immunoprecipitation experiments identified 945 RBM4 targets in mouse HEK293 cells, 39% of which were ascribed to "alternative splicing" by in silico pathway analysis. Mouse embryonic stem cells transfected with Rbm4 siRNA hairpins exhibited reduced colony numbers and size consistent with involvement of RBM4 in cell proliferation. RBM4 cDNA probing of a cancer cDNA array involving 18 different tumor types from 13 different tissues and matching normal tissue found overexpression of RBM4 mRNA (p<0.01) in cervical, breast, lung, colon, ovarian and rectal cancers. Many RBM4 targets we identified have been implicated in these cancers. In conclusion, our findings reveal transcriptome-wide targets of RBM4 and point to potential cancer-related targets and mechanisms that may involve RBM4.
Collapse
Affiliation(s)
- M Andrea Markus
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia.
| | - Yee Hwa J Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia.
| | - Brian J Morris
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Mohamed AM, Thénoz M, Solly F, Balsat M, Mortreux F, Wattel E. How mRNA is misspliced in acute myelogenous leukemia (AML)? Oncotarget 2015; 5:9534-45. [PMID: 25375204 PMCID: PMC4259418 DOI: 10.18632/oncotarget.2304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 01/09/2023] Open
Abstract
Approximately one-third of expressed genes are misspliced in AML, opening the possibility that additional factors than splicing factor mutations might cause RNA missplicing in these diseases. AML cells harbor a constellation of epigenetic modifications and regularly express large amounts of WT1 transcripts. Histone acetylation/methylation and DNA CpG methylation favor either exon skipping or inclusion, mainly through interfering with RNA Pol II-mediated elongation. This can result either from the binding of various factors on Pol II or alternatively from the recruitment of DNA binding factors that create roadblocks to Pol II-induced elongation. WT1 exhibits pleiotropic effects on mRNA splicing, which mainly result from the binding properties of WT1 via its zinc fingers domains to DNA, RNA, and proteins. Through the repression of the kinase SRPK1, WT1 modifies the splicing of VEGF, which plays important roles in hematopoiesis and angiogenesis. At the protein level, WT1 interacts with the splicing factors U2AF2, WTAP, and RPM4. Therefore, AML cells appear to have acquired numerous properties known to interfere with mRNA splicing. The challenge is now to elucidate these links in order to trigger mRNA splicing at the therapeutic level.
Collapse
|
7
|
Chang SH, Chang WL, Lu CC, Tarn WY. Alanine repeats influence protein localization in splicing speckles and paraspeckles. Nucleic Acids Res 2014; 42:13788-98. [PMID: 25414336 PMCID: PMC4267627 DOI: 10.1093/nar/gku1159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mammalian splicing regulatory protein RNA-binding motif protein 4 (RBM4) has an alanine repeat-containing C-terminal domain (CAD) that confers both nuclear- and splicing speckle-targeting activities. Alanine-repeat expansion has pathological potential. Here we show that the alanine-repeat tracts influence the subnuclear targeting properties of the RBM4 CAD in cultured human cells. Notably, truncation of the alanine tracts redistributed a portion of RBM4 to paraspeckles. The alanine-deficient CAD was sufficient for paraspeckle targeting. On the other hand, alanine-repeat expansion reduced the mobility of RBM4 and impaired its splicing activity. We further took advantage of the putative coactivator activator (CoAA)-RBM4 conjoined splicing factor, CoAZ, to investigate the function of the CAD in subnuclear targeting. Transiently expressed CoAZ formed discrete nuclear foci that emerged and subsequently separated-fully or partially-from paraspeckles. Alanine-repeat expansion appeared to prevent CoAZ separation from paraspeckles, resulting in their complete colocalization. CoAZ foci were dynamic but, unlike paraspeckles, were resistant to RNase treatment. Our results indicate that the alanine-rich CAD, in conjunction with its conjoined RNA-binding domain(s), differentially influences the subnuclear localization and biogenesis of RBM4 and CoAZ.
Collapse
Affiliation(s)
- Shuo-Hsiu Chang
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Lun Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Chen Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
Guan R, El-Rass S, Spillane D, Lam S, Wang Y, Wu J, Chen Z, Wang A, Jia Z, Keating A, Hu J, Wen XY. rbm47, a novel RNA binding protein, regulates zebrafish head development. Dev Dyn 2013; 242:1395-404. [PMID: 24038582 DOI: 10.1002/dvdy.24039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 08/02/2013] [Accepted: 08/14/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Vertebrate trunk induction requires inhibition of bone morphogenetic protein (BMP) signaling, whereas vertebrate head induction requires concerted inhibition of both Wnt and BMP signaling. RNA binding proteins play diverse roles in embryonic development and their roles in vertebrate head development remain to be elucidated. RESULTS We first characterized the human RBM47 as an RNA binding protein that specifically binds RNA but not single-stranded DNA. Next, we knocked down rbm47 gene function in zebrafish using morpholinos targeting the start codon and exon-1/intron-1 splice junction. Down-regulation of rbm47 resulted in headless and small head phenotypes, which can be rescued by a wnt8a blocking morpholino. To further reveal the mechanism of rbm47's role in head development, microarrays were performed to screen genes differentially expressed in normal and knockdown embryos. epcam and a2ml were identified as the most significantly up- and down-regulated genes, respectively. The microarrays also confirmed up-regulation of several genes involved in head development, including gsk3a, otx2, and chordin, which are important regulators of Wnt signaling. CONCLUSIONS Altogether, our findings reveal that Rbm47 is a novel RNA-binding protein critical for head formation and embryonic patterning during zebrafish embryogenesis which may act through a Wnt8a signaling pathway.
Collapse
Affiliation(s)
- Rui Guan
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medicine, Physiology and Institute of Medical Science, University of Toronto, Canada; Department of Laboratory Medicine and Pathology, University of Toronto & Program in Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Canada; Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital and Cancer Research Institute, Central South, Hunan Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lu CC, Chen TH, Wu JR, Chen HH, Yu HY, Tarn WY. Phylogenetic and molecular characterization of the splicing factor RBM4. PLoS One 2013; 8:e59092. [PMID: 23527094 PMCID: PMC3602429 DOI: 10.1371/journal.pone.0059092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/11/2013] [Indexed: 12/13/2022] Open
Abstract
The mammalian multi-functional RNA-binding motif 4 (RBM4) protein regulates alterative splicing of precursor mRNAs and thereby affects pancreas and muscle cell differentiation. RBM4 homologs exist in all metazoan lineages. The C-terminal unstructured domain of RBM4 is evolutionarily divergent and contains stretches of low-complexity sequences, including single amino acid and/or dipeptide repeats. Here we examined the splicing activity, phosphorylation potential, and subcellular localization of RBM4 homologs from a wide range of species. The results show that these RBM4 homologs exert different effects on 5′ splice site utilization and exon selection, and exhibit different subnuclear localization patterns. Therefore, the C-terminal domain of RBM4 may contribute to functional divergence between homologs. On the other hand, analysis of chimeric human RBM4 proteins containing heterologous sequences at the C-terminus revealed that the N-terminal RNA binding domain of RBM4 could have a dominant role in determining splicing outcome. Finally, all RBM4 homologs examined could be phosphorylated by an SR protein kinase, suggesting that they are regulated by a conserved mechanism in different species. This study offers a first clue to functional evolution of a splicing factor.
Collapse
Affiliation(s)
- Chia-Chen Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tz-Hao Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jhe-Rong Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hung-Hsi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-Yi Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
10
|
Genetic architecture of local adaptation in lunar and diurnal emergence times of the marine midge Clunio marinus (Chironomidae, Diptera). PLoS One 2012; 7:e32092. [PMID: 22384150 PMCID: PMC3285202 DOI: 10.1371/journal.pone.0032092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/23/2012] [Indexed: 12/24/2022] Open
Abstract
Circadian rhythms pre-adapt the physiology of most organisms to predictable daily changes in the environment. Some marine organisms also show endogenous circalunar rhythms. The genetic basis of the circalunar clock and its interaction with the circadian clock is unknown. Both clocks can be studied in the marine midge Clunio marinus (Chironomidae, Diptera), as different populations have different local adaptations in their lunar and diurnal rhythms of adult emergence, which can be analyzed by crossing experiments. We investigated the genetic basis of population variation in clock properties by constructing the first genetic linkage map for this species, and performing quantitative trait locus (QTL) analysis on variation in both lunar and diurnal timing. The genome has a genetic length of 167–193 centimorgans based on a linkage map using 344 markers, and a physical size of 95–140 megabases estimated by flow cytometry. Mapping the sex determining locus shows that females are the heterogametic sex, unlike most other Chironomidae. We identified two QTL each for lunar emergence time and diurnal emergence time. The distribution of QTL confirms a previously hypothesized genetic basis to a correlation of lunar and diurnal emergence times in natural populations. Mapping of clock genes and light receptors identified ciliary opsin 2 (cOps2) as a candidate to be involved in both lunar and diurnal timing; cryptochrome 1 (cry1) as a candidate gene for lunar timing; and two timeless (tim2, tim3) genes as candidate genes for diurnal timing. This QTL analysis of lunar rhythmicity, the first in any species, provides a unique entree into the molecular analysis of the lunar clock.
Collapse
|
11
|
Maragh S, Miller RA, Bessling SL, McGaughey DM, Wessels MW, de Graaf B, Stone EA, Bertoli-Avella AM, Gearhart JD, Fisher S, McCallion AS. Identification of RNA binding motif proteins essential for cardiovascular development. BMC DEVELOPMENTAL BIOLOGY 2011; 11:62. [PMID: 22011202 PMCID: PMC3277282 DOI: 10.1186/1471-213x-11-62] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 10/19/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND We recently identified Rbm24 as a novel gene expressed during mouse cardiac development. Due to its tightly restricted and persistent expression from formation of the cardiac crescent onwards and later in forming vasculature we posited it to be a key player in cardiogenesis with additional roles in vasculogenesis and angiogenesis. RESULTS To determine the role of this gene in cardiac development, we have identified its zebrafish orthologs (rbm24a and rbm24b), and functionally evaluated them during zebrafish embryogenesis. Consistent with our underlying hypothesis, reduction in expression of either ortholog through injection of morpholino antisense oligonucleotides results in cardiogenic defects including cardiac looping and reduced circulation, leading to increasing pericardial edema over time. Additionally, morphant embryos for either ortholog display incompletely overlapping defects in the forming vasculature of the dorsal aorta (DA), posterior caudal vein (PCV) and caudal vein (CV) which are the first blood vessels to form in the embryo. Vasculogenesis and early angiogenesis in the trunk were similarly compromised in rbm24 morphant embryos at 48 hours post fertilization (hpf). Subsequent vascular maintenance was impaired in both rbm24 morphants with substantial vessel degradation noted at 72 hpf. CONCLUSION Taken collectively, our functional data support the hypothesis that rbm24a and rbm24b are key developmental cardiac genes with unequal roles in cardiovascular formation.
Collapse
Affiliation(s)
- Samantha Maragh
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Brian J. Morris
- From the Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, Australia
| |
Collapse
|
13
|
Lam YW, Evans VC, Heesom KJ, Lamond AI, Matthews DA. Proteomics analysis of the nucleolus in adenovirus-infected cells. Mol Cell Proteomics 2009; 9:117-30. [PMID: 19812395 PMCID: PMC2808258 DOI: 10.1074/mcp.m900338-mcp200] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Adenoviruses replicate primarily in the host cell nucleus, and it is well
established that adenovirus infection affects the structure and function of host
cell nucleoli in addition to coding for a number of nucleolar targeted viral
proteins. Here we used unbiased proteomics methods, including high throughput
mass spectrometry coupled with stable isotope labeling by amino acids in cell
culture (SILAC) and traditional two-dimensional gel electrophoresis, to identify
quantitative changes in the protein composition of the nucleolus during
adenovirus infection. Two-dimensional gel analysis revealed changes in six
proteins. By contrast, SILAC-based approaches identified 351 proteins with 24
proteins showing at least a 2-fold change after infection. Of those, four were
previously reported to have aberrant localization and/or functional relevance
during adenovirus infection. In total, 15 proteins identified as changing in
amount by proteomics methods were examined in infected cells using confocal
microscopy. Eleven of these proteins showed altered patterns of localization in
adenovirus-infected cells. Comparing our data with the effects of actinomycin D
on the nucleolar proteome revealed that adenovirus infection apparently
specifically targets a relatively small subset of nucleolar antigens at the time
point examined.
Collapse
Affiliation(s)
- Yun W Lam
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | | | | | | | | |
Collapse
|
14
|
RBM4: A multifunctional RNA-binding protein. Int J Biochem Cell Biol 2009; 41:740-3. [DOI: 10.1016/j.biocel.2008.05.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 05/05/2008] [Accepted: 05/06/2008] [Indexed: 01/26/2023]
|
15
|
McNeil GP, Kaur M, Purrier S, Kang R. The Drosophila RNA-binding protein Lark is required for localization of Dmoesin to the oocyte cortex during oogenesis. Dev Genes Evol 2008; 219:11-9. [DOI: 10.1007/s00427-008-0260-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/29/2008] [Indexed: 11/30/2022]
|
16
|
Pfuhl T, Mamiani A, Dürr M, Welter S, Stieber J, Ankara J, Liss M, Dobner T, Schmitt A, Falkai P, Kremmer E, Jung V, Barth S, Grässer FA. The LARK/RBM4a protein is highly expressed in cerebellum as compared to cerebrum. Neurosci Lett 2008; 444:11-5. [DOI: 10.1016/j.neulet.2008.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 07/04/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
|
17
|
Morrison AA, Viney RL, Ladomery MR. The post-transcriptional roles of WT1, a multifunctional zinc-finger protein. Biochim Biophys Acta Rev Cancer 2007; 1785:55-62. [PMID: 17980713 DOI: 10.1016/j.bbcan.2007.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/28/2007] [Accepted: 10/03/2007] [Indexed: 11/19/2022]
Abstract
WT1 was first described in 1990 as a tumour suppressor gene associated with Wilms tumour (nephroblastoma). It encodes a typical transcription factor with four C(2)-H(2) zinc fingers in the C-terminus. However WT1 is surprisingly complex at multiple levels: it is involved in the development of several organ systems; and is both a tumour suppressor and oncogene. Here we review evidence that has accumulated over the past decade to suggest that as well as binding DNA, WT1 also binds mRNA targets via its zinc fingers and interacts with several splice factors. WT1's first reported post-transcriptional function is also reviewed. WT1's complex roles in development and disease now need to be understood in terms of both DNA and mRNA targets.
Collapse
Affiliation(s)
- Avril A Morrison
- Centre for Research in Biomedicine, Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| | | | | |
Collapse
|
18
|
Markus MA, Heinrich B, Raitskin O, Adams DJ, Mangs H, Goy C, Ladomery M, Sperling R, Stamm S, Morris BJ. WT1 interacts with the splicing protein RBM4 and regulates its ability to modulate alternative splicing in vivo. Exp Cell Res 2006; 312:3379-88. [PMID: 16934801 DOI: 10.1016/j.yexcr.2006.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 06/26/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
Wilm's tumor protein 1 (WT1), a protein implicated in various cancers and developmental disorders, consists of two major isoforms: WT1(-KTS), a transcription factor, and WT1(+KTS), a post-transcriptional regulator that binds to RNA and can interact with splicing components. Here we show that WT1 interacts with the novel splicing regulator RBM4. Each protein was found to colocalize in nuclear speckles and to cosediment with supraspliceosomes in glycerol gradients. RBM4 conferred dose-dependent and cell-specific regulation of alternative splicing of pre-mRNAs transcribed from several reporter genes. We found that overexpressed WT1(+KTS) abrogated this effect of RBM4 on splice-site selection, whereas WT1(-KTS) did not. We conclude that the (+KTS) form of WT1 is able to inhibit the effect of RBM4 on alternative splicing.
Collapse
Affiliation(s)
- M Andrea Markus
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, Building F13, The University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|