1
|
High salt diet accelerates the progression of murine lupus through dendritic cells via the p38 MAPK and STAT1 signaling pathways. Signal Transduct Target Ther 2020; 5:34. [PMID: 32296043 PMCID: PMC7145808 DOI: 10.1038/s41392-020-0139-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 02/05/2023] Open
Abstract
The increased incidence of systemic lupus erythematosus (SLE) in recent decades might be related to changes in modern dietary habits. Since sodium chloride (NaCl) promotes pathogenic T cell responses, we hypothesize that excessive salt intake contributes to the increased incidence of autoimmune diseases, including SLE. Given the importance of dendritic cells (DCs) in the pathogenesis of SLE, we explored the influence of an excessive sodium chloride diet on DCs in a murine SLE model. We used an induced lupus model in which bone marrow-derived dendritic cells (BMDCs) were incubated with activated lymphocyte-derived DNA (ALD-DNA) and transferred into C57BL/6 recipient mice. We observed that a high-salt diet (HSD) markedly exacerbated lupus progression, which was accompanied by increased DC activation. NaCl treatment also stimulated the maturation, activation and antigen-presenting ability of DCs in vitro. Pretreatment of BMDCs with NaCl also exacerbated BMDC-ALD-DNA-induced lupus. These mice had increased production of autoantibodies and proinflammatory cytokines, more pronounced splenomegaly and lymphadenopathy, and enhanced pathological renal lesions. The p38 MAPK–STAT1 pathway played an important role in NaCl-induced DC immune activities. Taken together, our results demonstrate that HSD intake promotes immune activation of DCs through the p38 MAPK–STAT1 signaling pathway and exacerbates the features of SLE. Thus, changes in diet may provide a novel strategy for the prevention or amelioration of lupus or other autoimmune diseases.
Collapse
|
2
|
Systemic Lupus Erythematosus: Pathogenesis at the Functional Limit of Redox Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1651724. [PMID: 31885772 PMCID: PMC6899283 DOI: 10.1155/2019/1651724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/15/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a disease characterized by the production of autoreactive antibodies and cytokines, which are thought to have a major role in disease activity and progression. Immune system exposure to excessive amounts of autoantigens that are not efficiently removed is reported to play a significant role in the generation of autoantibodies and the pathogenesis of SLE. While several mechanisms of cell death-based autoantigenic exposure and compromised autoantigen removal have been described in relation to disease onset, a significant association with the development of SLE can be attributed to increased apoptosis and impaired phagocytosis of apoptotic cells. Both apoptosis and impaired phagocytosis can be caused by hydrogen peroxide whose cellular production is enhanced by exposure to endogenous hormones or environmental chemicals, which have been implicated in the pathogenesis of SLE. Hydrogen peroxide can cause lymphocyte apoptosis and glutathione depletion, both of which are associated with the severity of SLE. The cellular accumulation of hydrogen peroxide is facilitated by the myriad of stimuli causing increased cellular bioenergetic activity that enhances metabolic production of this toxic oxidizing agent such as emotional stress and infection, which are recognized SLE exacerbating factors. When combined with impaired cellular hydrogen peroxide removal caused by xenobiotics and genetically compromised hydrogen peroxide elimination due to enzymatic polymorphic variation, a mechanism for cellular accumulation of hydrogen peroxide emerges, leading to hydrogen peroxide-induced apoptosis and impaired phagocytosis, enhanced autoantigen exposure, formation of autoantibodies, and development of SLE.
Collapse
|
3
|
Zhu TY, Griffith JF, Qin L, Hung VWY, Fong TN, Au SK, Tang XL, Kun EW, Kwok AW, Leung PC, Li EK, Tam LS. Cortical thinning and progressive cortical porosity in female patients with systemic lupus erythematosus on long-term glucocorticoids: a 2-year case-control study. Osteoporos Int 2015; 26:1759-71. [PMID: 25736166 DOI: 10.1007/s00198-015-3077-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/11/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED In this study, we characterized longitudinal changes of volumetric bone mineral density and cortical and trabecular microstructure at the distal radius using HR-pQCT in female systemic lupus erythematosus (SLE) patients on long-term glucocorticoids. Cortical thinning and increased cortical porosity are the major features of longitudinal microstructural deterioration in SLE patients. INTRODUCTION The study aims to characterize longitudinal changes of volumetric bone mineral density (vBMD) and bone microstructure at distal radius in female systemic lupus erythematosus (SLE) patients on long-term glucocorticoids. METHODS This 2-year case-control study consisted of 166 premenopausal subjects (75 SLE patients and 91 controls) and 79 postmenopausal subjects (44 SLE patients and 35 controls). We obtained areal BMD (aBMD) by dual-energy X-ray absorptiometry at multiple skeletal sites and indices of vBMD and microstructure at distal radius by high-resolution peripheral quantitative computed tomography (HR-pQCT) at baseline, 12 and 24 months. RESULTS In either premenopausal or postmenopausal subjects, changes in aBMD did not differ between patients and controls except that decrease in aBMD at total hip at 24 months in premenopausal patients was significantly higher. In premenopausal subjects, decrease in cortical area (-0.51 vs. -0.06 %, p = 0.039) and thickness (-0.63 vs. 0.02 %, p = 0.031) and increase in cortical porosity (21.7 vs. 7.16 %, p = 0.030) over study period were significantly larger in patients after adjustment of age and body mass index. Decreased in trabecular vBMD was significantly less (-0.63 vs. -2.32 %, p = 0.001) with trabecular microstructure better maintained in patients. In postmenopausal subjects, decrease in cortical vBMD (-2.66 vs. -1.56 %, p = 0.039) and increase in cortical porosity (41.6 vs. 16.3 %, p = 0.021) were significantly higher in patients, and there was no group-wise difference in change of trabecular microstructure. CONCLUSION Longitudinal microstructural deterioration in SLE is characterized by cortical thinning and increased cortical porosity. Cortical bone is an important source of bone loss in SLE patients on glucocorticoids.
Collapse
Affiliation(s)
- T Y Zhu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Bone Quality and Health Center, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - J F Griffith
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - L Qin
- Bone Quality and Health Center, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - V W Y Hung
- Bone Quality and Health Center, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - T-N Fong
- Bone Quality and Health Center, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - S-K Au
- The Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - X-L Tang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - E W Kun
- Department of Medicine and Geriatrics, Tai Po Hospital, Tai Po, Hong Kong SAR, China
| | - A W Kwok
- The Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - P-C Leung
- The Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - E K Li
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - L-S Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, 9/F Clinical Sciences Building, 30-32 Ngan Shing Street, Shatin, N.T, Hong Kong SAR, China.
| |
Collapse
|
4
|
Saito K, Mori S, Date F, Ono M. Epigallocatechin gallate inhibits oxidative stress-induced DNA damage and apoptosis in MRL-Faslprmice with autoimmune sialadenitis via upregulation of heme oxygenase-1 and Bcl-2. Autoimmunity 2014; 47:13-22. [DOI: 10.3109/08916934.2013.850079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Abstract
Increased longevity of patients with systemic lupus erythematosus (SLE) leads to chronic organ damage accrual, which reduces the possibility of further survival improvement in patients with the disease. Observations from lupus centres worldwide revealed that the prevalence of damage occurring in the cardiovascular system in patients with SLE has increased over the past four decades. The results of a meta-analysis involving over 70 observational studies demonstrated that lupus-related organ damage involving the neuropsychiatric and renal systems also remains a major factor that limits survival improvement in patients with this disease. While efforts to halt acute lupus-related injury are continuing, through early diagnosis and effective use of immunosuppressive agents, a concomitant strategy to improve survival of patients with SLE would be early detection and timely treatment of lupus-related organ damage with meticulous monitoring. This Review discusses the pattern and trend of organ damage in patients with SLE worldwide, the potential serological and genetic mechanisms of organ damage, and the advances in research on potential tools for early detection of lupus-related organ damage, such as functional brain imaging techniques, measurement of endothelial function, identification of biomarkers from body fluids, and development of risk calculation models.
Collapse
|
6
|
Cowan EA, Oldham CD, May SW. Identification of a thioselenurane intermediate in the reaction between phenylaminoalkyl selenoxides and glutathione. Arch Biochem Biophys 2011; 506:201-7. [DOI: 10.1016/j.abb.2010.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 11/30/2022]
|
7
|
Bhatnagar H, Kala S, Sharma L, Jain S, Kim KS, Pal R. Serum and organ-associated anti-hemoglobin humoral autoreactivity: association with anti-Sm responses and inflammation. Eur J Immunol 2010; 41:537-48. [PMID: 21268022 DOI: 10.1002/eji.201040989] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/25/2010] [Accepted: 11/19/2010] [Indexed: 11/08/2022]
Abstract
The release of hemoglobin (Hb) occurs in some infectious and autoimmune diseases characterized by inflammation. As levels of haptoglobin (Hp) fall, free Hb can cause pathology. Humoral autoreactivity to human Hb was demonstrated in the sera of systemic lupus erythematosus (SLE), leishmania and malaria patients. Serum anti-murine Hb antibody levels in lupus-prone mice also exhibited an age-dependent increase, with progressive organ sequestration; significant isotypic correlation was observed with anti-dsDNA antibodies. A suggestive link between anti-Hb and anti-Sm responses was observed: Human lupus sera expressing anti-Sm antibody reactivity preferentially contained heightened levels of anti-Hb autoantibodies, and immunization of lupus-prone mice with Sm led to enhanced anti-murine Hb reactivity. Human and murine anti-Hb monoclonal antibodies were generated, some of which were preferentially reactive toward disease-associated methemoglobin. Epitope-mapping studies revealed evidence of intra-molecular cross-reactivity. One such autoantibody synergized with Hb to enhance the secretion of pro-inflammatory cytokines while eliciting the increased production of monocyte migratory signals from endothelial cells. Preferential usage of specific variable region gene segments was not observed, although somatic mutations were documented. These studies reveal that, while the etiology, specificity and sequences of anti-Hb autoreactive antibodies can vary, they occur quite frequently and can have inflammatory consequences.
Collapse
Affiliation(s)
- Harshita Bhatnagar
- National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, India
| | | | | | | | | | | |
Collapse
|
8
|
Xie X, McLean MD, Hall JC. Antibody-dependent cell-mediated cytotoxicity- and complement-dependent cytotoxicity-independent bactericidal activity of an IgG against Pseudomonas aeruginosa O6ad. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:3725-33. [PMID: 20190144 DOI: 10.4049/jimmunol.0902732] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In addition to Ag recognition, some Abs are capable of killing target organisms in the absence of phagocytes and complement. In this study, we report that an anti-Pseudomonas aeruginosa O6ad LPS IgG(1), tobacco-expressed human S20 IgG(1) (te-hS20), as well as its recombinant Fab and single-chain variable fragment (scFv) fragments have cellular- and complement-independent bactericidal activity. te-hS20 and its Fab and scFv significantly reduced viability of P. aeruginosa O6ad in dose- and time-dependent manners in vitro and also showed lower levels of bactericidal activity against P. aeruginosa PAO1, but had no activity against P. aeruginosa O10, Escherichia coli TG1, and Streptococcus agalactiae. The H chain and its Fd fragment both had significant Ag-binding and bactericidal activities against P. aeruginosa O6ad. Bactericidal activity was completely inhibited with specific LPS Ag, suggesting that Ag binding is involved in the bactericidal mechanism. Live/dead cell staining and electron microscopic observations indicate that the bactericidal effect was due to disruption of the cell wall and suggest inhibition of cell division. In addition to te-hS20, the Fab and scFv were also protective in vivo, as leukopenic mice had prolonged and improved survival after administration of these Ab fragments followed by challenge with P. aeruginosa O6ad cells at 80-90% lethal dose, supporting a bactericidal mechanism independent of phagocytes and complement. Understanding of the bactericidal mechanism will allow assessment of the potential for therapeutic application of these Abs.
Collapse
Affiliation(s)
- Xuemei Xie
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
9
|
Mahgoub M, Raslan H, Assal H, Gheita T, Fikry I, El-Moniem MA, Anwar M. Oxidant/Antioxidant Status in Patients with Behçet Disease. MACEDONIAN JOURNAL OF MEDICAL SCIENCES 2010; 3:37-42. [DOI: 10.3889/mjms.1857-5773.2010.0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
Belogurov A, Kozyr A, Ponomarenko N, Gabibov A. Catalytic antibodies: balancing between Dr. Jekyll and Mr. Hyde. Bioessays 2010; 31:1161-71. [PMID: 19795406 DOI: 10.1002/bies.200900020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The immunoglobulin molecule is a perfect template for the de novo generation of biocatalytic functions. Catalytic antibodies, or abzymes, obtained by the structural mimicking of enzyme active sites have been shown to catalyze numerous chemical reactions. Natural enzyme analogs for some of these reactions have not yet been found or possibly do not exist at all. Nowadays, the dramatic breakthrough in antibody engineering and expression technologies has promoted a considerable expansion of immunoglobulin's medical applications and is offering abzymes a unique chance to become a promising source of high-precision "catalytic vaccines." At the same time, the discovery of natural abzymes on the background of autoimmune disease revealed their beneficial and pathogenic roles in the disease progression. Thus, the conflicting Dr. Jekyll and Mr. Hyde protective and destructive essences of catalytic antibodies should be carefully considered in the development of therapeutic abzyme applications.
Collapse
Affiliation(s)
- Alexey Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | | | | | | |
Collapse
|