1
|
Jalalian S, Ebrahimzadeh A, Zahedi SM, Becker SJ, Hayati F, Hassanpouraghdam MB, Rasouli F. Chlamydomonas sp. extract meliorates the growth and physiological responses of 'Camarosa' strawberry (Fragaria × ananassa Duch) under salinity stress. Sci Rep 2024; 14:22436. [PMID: 39341865 PMCID: PMC11438894 DOI: 10.1038/s41598-024-72866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Microalgae like Chlamydomonas are beneficial organisms employed as biological stimulants to improve plants' growth, fruit quality, and stress tolerance. In the current study, the effects of Chlamydomonas sp. foliar spraying (0, 20, and 40 ml L-1) were assayed on Camarosa strawberry plants under salinity stress (0, 40, and 80 mM NaCl). The results showed that the foliar application of Chlamydomonas extract influenced strawberry's morphological, physiological, and biochemical characteristics under salinity stress. Foliar treatment of Chlamydomonas extract with and without salinity stress increased the leaf number and leaf area, the leaf relative water content, and photosynthetic pigments content. Moreover, the foliar application of Chlamydomonas extract decreased lipid peroxidation and hydrogen peroxide content and, on the other hand, enhanced the antioxidant enzymes activity (superoxide dismutase, guaiacol peroxidase, and peroxidase), phenolics, flavonoids, and anthocyanins content under salinity stress. For instance, the highest total antioxidant capacity was found in the plants foliar treated with 40 ml L-1 of Chlamydomonas algae extract under 80 mM salinity stress, which increased by 102.4% compared to the controls, as well as the highest total phenolic compounds and anthocyanin's content were 30.22, and 7.2% more than the control plants, respectively. Overall, the foliar application of Chlamydomonas algae extracts, especially at a concentration of 20 ml L-1 enhanced the strawberry's growth, yield, and physiological traits under saline conditions. The results with more detailed evaluations will be advisable for the pioneer farmers and extension section.
Collapse
Affiliation(s)
- Sahar Jalalian
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Asghar Ebrahimzadeh
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Silvia Jiménez Becker
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almeria, Almeria, España
| | - Faezeh Hayati
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | | | - Farzad Rasouli
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| |
Collapse
|
2
|
Zhang W, Li K, Li S, Lv R, Ma J, Yin P, Li L, Sun N, Chen Y, Lu L, Li Y, Zhang Q, Yan H. High-throughput sequencing reveals hub genes for human early embryonic development arrest in vitro fertilization: a pilot study. Front Physiol 2023; 14:1279559. [PMID: 38033342 PMCID: PMC10684309 DOI: 10.3389/fphys.2023.1279559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023] Open
Abstract
Many clinical studies have shown that embryos of in vitro fertilization (IVF) are often prone to developmental arrest, which leads to recurrent failure of IVF treatment. Early embryonic arrest has always been an urgent clinical problem in assisted reproduction centers. However, the molecular mechanisms underlying early embryonic development arrest remain largely unknown. The objective of this study is to investigate potential candidate hub genes and key signaling pathways involved in early stages of embryonic development. RNA-seq analysis was performed on normal and arrest embryos to study the changes of gene expression during early embryonic development. A total of 520 genes exhibiting differential expression were identified, with 174 genes being upregulated and 346 genes being downregulated. Upregulated genes show enrichment in biosynthesis, cellular proliferation and differentiation, and epigenetic regulation. While downregulated genes exhibit enrichment in transcriptional activity, epigenetic regulation, cell cycle progression, cellular proliferation and ubiquitination. The STRING (search tool for the retravel of interacting genes/proteins) database was utilized to analyze protein-protein interactions among these genes, aiming to enhance comprehension of the potential role of these differentially expressed genes (DEGs). A total of 22 hub genes (highly connected genes) were identified among the DEGs using Cytoscape software. Of these, ERBB2 and VEGFA were upregulated, while the remaining 20 genes (CCNB1, CCNA2, DICER1, NOTCH1, UBE2B, UBE2N, PRMT5, UBE2D1, MAPK3, SOX9, UBE2C, UB2D2, EGF, ACTB, UBA52, SHH, KRAS, UBE2E1, ADAM17 and BRCA2) were downregulated. These hub genes are associated with crucial biological processes such as ubiquitination, cellular senescence, cell proliferation and differentiation, and cell cycle. Among these hub genes, CCNA2 and CCNB1 may be involved in controlling cell cycle, which are critical process in early embryonic development.
Collapse
Affiliation(s)
- Wuwen Zhang
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shifeng Li
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Rong Lv
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Yin
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningyu Sun
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Chen
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinhua Zhang
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Yan
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Mehmandar MN, Rasouli F, Giglou MT, Zahedi SM, Hassanpouraghdam MB, Aazami MA, Tajaragh RP, Ryant P, Mlcek J. Polyethylene Glycol and Sorbitol-Mediated In Vitro Screening for Drought Stress as an Efficient and Rapid Tool to Reach the Tolerant Cucumis melo L. Genotypes. PLANTS (BASEL, SWITZERLAND) 2023; 12:870. [PMID: 36840218 PMCID: PMC9967323 DOI: 10.3390/plants12040870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
An efficient method to instantly assess drought-tolerant plants after germination is using osmoregulation in tissue culture media. In this study, the responses of three Iranian melon genotypes to sorbitol (0.1, 0.2, and 0.4 M) or polyethylene glycol (PEG) (0.009, 0.012, and 0.015 M) were evaluated as drought stress simulators in MS medium. 'Girke' (GIR), 'Ghobadloo' (GHO), and 'Toghermezi' (TOG) were the genotypes. GIR is reputed as a drought-tolerant genotype in Iran. The PEG or sorbitol decreased the coleoptile length, fresh weight, and photosynthetic pigments content while enhancing proline and malondialdehyde (MDA) contents. Protein content and antioxidant enzyme activity were utterly dependent on genotype, osmotic regulators, and their concentration. Coleoptile length, root and shoot fresh weight, root dry weight, proline and MDA content, and guaiacol peroxidase (GPX) activity can be used as indicators for in vitro screening of Cucumis melo L. genotypes. The results showed that sorbitol mimics drought stress better than PEG. Overall, our findings suggest that in vitro screening could be an accurate, rapid, and reliable methodology for evaluating and identifying drought-tolerant genotypes.
Collapse
Affiliation(s)
- Maryam Nekoee Mehmandar
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh 5518779842, Iran
| | - Farzad Rasouli
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh 5518779842, Iran
| | - Mousa Torabi Giglou
- Department of Horticulture, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran
| | - Seyed Morteza Zahedi
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh 5518779842, Iran
| | | | - Mohammad Ali Aazami
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh 5518779842, Iran
| | - Rana Panahi Tajaragh
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh 5518779842, Iran
| | - Pavel Ryant
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriScience, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic
| |
Collapse
|
4
|
Quality Attributes of Chitosan-Coated Cornelian Cherry (Cornus mas L.) Fruits under Different Storage Temperatures. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Temperature is the dominant environmental stimulus that influences the postharvest quality, visual appearance, and nutritional content of fruits. Temperature hastens fruit ripening and senescence by the impact on respiration rate and the acceleration of metabolic reactions. This study was conducted to select the optimized temperature for preserving the quality-related traits and antioxidant potential of cornelian cherry fruits after harvest. The fruits were treated with 1% chitosan and then kept under 0, 5, 10, and 21 °C for 21 days. The results revealed that fruits kept under lower than room temperature (21 °C) better retained antioxidant capacity and had higher levels of phenolics, flavonoids, and anthocyanins and even higher antioxidant enzyme activity, hence attaining prolonged postharvest life. Considering the quantity attributes and the shelf life, the temperature of choice was 0 °C. Zero temperature was also the best to keep the antioxidant capacity of cornelian cherry fruits. Overall, the results showed that low temperature and chitosan pretreatment provide an efficient method for maintaining the nutritional quality and antioxidant capacity of cornelian cherry fruits during storage time.
Collapse
|
5
|
Cai X, Yang S, Peng Y, Huang Y, Chen H, Wu X. Screening of key genes during early embryonic development of Nile tilapia (Oreochromis niloticus). GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Transcriptome Analysis of Maternal Gene Transcripts in Unfertilized Eggs of Misgurnus anguillicaudatus and Identification of Immune-Related Maternal Genes. Int J Mol Sci 2020; 21:ijms21113872. [PMID: 32485896 PMCID: PMC7312655 DOI: 10.3390/ijms21113872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
Maternal genes are important in directing early development and determining egg quality in fish. We here report the de novo transcriptome from four tissue libraries of the cyprinid loach, Misgurnus anguillicaudatus, and for the first time identified maternal gene transcripts in unfertilized eggs and suggest their immune system involvement. Expression profiles and functional enrichment revealed a total 24,116 transcripts were expressed as maternal transcripts in unfertilized eggs, which were involved in a wide range of biological functions and pathways. Comparison expression profiles and analysis of tissue specificity revealed that the large numbers of maternal transcripts were stored in unfertilized eggs near the late phase of ovarian maturation and before ovulation. Functional classification showed a total of 279 maternal immune-related transcripts classified with immune system process GO term and immune system KEGG pathway. qPCR analysis showed that transcript levels of identified maternal immune-related candidate genes were dynamically modulated during development and early ontogeny of M. anguillicaudatus. Taken together, this study could not only provide knowledge on the protective roles of maternal immune-related genes during early life stage of M. anguillicaudatus but could also be a valuable transcriptomic/genomic resource for further analysis of maternally provisioned genes in M. anguillicaudatus and other related teleost fishes.
Collapse
|
7
|
Wei HC, Chen P, Liang XF, Yu HH, Wu XF, Han J, Luo L, Gu X, Xue M. Plant protein diet suppressed immune function by inhibiting spiral valve intestinal mucosal barrier integrity, anti-oxidation, apoptosis, autophagy and proliferation responses in amur sturgeon (Acipenser schrenckii). FISH & SHELLFISH IMMUNOLOGY 2019; 94:711-722. [PMID: 31574297 DOI: 10.1016/j.fsi.2019.09.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
An 8-week growth trial was conducted to investigate the effects of replacing dietary fishmeal with a plant protein blend on the growth performance, mucosal barrier integrity and the related regulation mechanism in Amur Sturgeon (Acipenser schrenckii) with initial weight of 87.48 g. Three isonitrogenous and isoenergetic diets were prepared. A basal diet containing 540 g/kg fishmeal (P0), whereas the other two diets were formulated by replacing 50% and 100% of FM with plant protein blend (soybean protein concentrate and cottonseed protein concentrate), and named as P50 and P100, respectively. Although essential amino acids, fatty acids, and available phosphorus had been balanced according to the nutrient requirement of sturgeon, compared with the fish of P0 and P50, the full plant protein diet (P100) significantly reduced growth performance and survival, and accompanied with serious spiral valve intestinal (SVI) damage. The increased tissue necrosis and failed responses in anti-oxidation, programming apoptosis, autophagy and cell proliferation system were regulated by inhibiting ERK1 phosphorylation, which indicated that SVI hypoimmunity and functional degradation were the main reasons for the high mortality and low utilization ability of plant protein in Amur sturgeon.
Collapse
Affiliation(s)
- H C Wei
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - P Chen
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - X F Liang
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - H H Yu
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Beijing Fisheries Research Institute, Beijing, 100068, China
| | - X F Wu
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - J Han
- Institute of Food and Nutrition Development, Ministry of Agriculture, Beijing, 100081, China
| | - L Luo
- Beijing Fisheries Research Institute, Beijing, 100068, China
| | - X Gu
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Agriculture and Rural Ministry Quality and Safety Risk Evaluation Laboratory of Feed and Feed Additives for Animal Husbandry, Beijing, 100081, China.
| | - M Xue
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Agriculture and Rural Ministry Quality and Safety Risk Evaluation Laboratory of Feed and Feed Additives for Animal Husbandry, Beijing, 100081, China.
| |
Collapse
|
8
|
Identification of Differentially Expressed Genes and Pathways for Abdominal Fat Deposition in Ovariectomized and Sham-Operated Chickens. Genes (Basel) 2019; 10:genes10020155. [PMID: 30781724 PMCID: PMC6410310 DOI: 10.3390/genes10020155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/29/2019] [Accepted: 02/13/2019] [Indexed: 11/16/2022] Open
Abstract
Ovariectomy results in improved meat quality (growth rate, tenderness, and flavor) of broilers. However, some negative effects increased (abdominal fat (AF) deposition, low feed conversion, etc.) have also been reported. In this study, the gene expression profiles of AF tissue in ovariectomized and sham-operated chickens were determined to identify differentially expressed genes (DEGs) and pathways to explore the molecular mechanisms underlying AF accumulation. Comparing the ovariectomized group and the sham-operated group, the abdominal fat weight (AFW) and abdominal fat percentage (AFP) were increased significantly (p < 0.05) at 14 and 19 weeks after ovariectomy. According to the gene expression profiling analysis, 108 DEGs of fat metabolism were screened from 1461 DEGs. Among them, ABCA1, ABCACA, LPL, CREB1, PNPLA2, which are involved in glycerolipid—or steroid—associated biological processes, and the hormone receptor genes, ESR1 and PRLR, were down-regulated significantly in the ovariectomized group compared to the sham-operated group (p < 0.05). Conversely, CETP, DGAT2, DHCR24, HSD17B7 and MSMO1, were significantly up-regulated (p < 0.05) after ovariectomy. Based on the DEGs, the glycerolipid metabolism, steroid biosynthesis, and other signaling pathways (MAPK, TGF-β, and adhesion pathways, etc.) were enriched, which may also contribute to the regulation of AF deposition. Our data suggest that AF deposition was significantly increased in ovariectomized chickens by the down-regulation of the decomposition genes of glycerolipid metabolism, which inhibits AF degradation, and the up-regulation of steroid biosynthesis genes, which increases fat accumulation. These findings provide new insights into the molecular mechanisms of fat deposition in the ovariectomized chickens.
Collapse
|
9
|
Du YF, Ding QL, Li YM, Fang WR. Identification of Differentially Expressed Genes and Pathways for Myofiber Characteristics in Soleus Muscles between Chicken Breeds Differing in Meat Quality. Anim Biotechnol 2016; 28:83-93. [DOI: 10.1080/10495398.2016.1206555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Y. F. Du
- College of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Q. L. Ding
- College of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Y. M. Li
- College of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - W. R. Fang
- College of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Silva ACG, Almeida DV, Nornberg BF, Figueiredo MA, Romano LA, Marins LF. Effects of Double Transgenesis of Somatotrophic Axis (GH/GHR) on Skeletal Muscle Growth of Zebrafish (Danio rerio). Zebrafish 2015; 12:408-13. [PMID: 26574627 DOI: 10.1089/zeb.2015.29001.sil] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transgenic fish for growth hormone (GH) has been considered as a potential technological improvement in aquaculture. In this study, a double-transgenic zebrafish was used to evaluate the effect of GH and its receptor (GHR) on muscle growth. Double transgenics reached the same length of GH transgenic, but with significantly less weight, featuring an unbalanced growth. The condition factor of GH/GHR-transgenic fish was lower than the other genotypes. Histological analysis showed a decrease in the percentage of thick muscle fibers in GH/GHR genotype of ∼ 80% in comparison to GH-transgenic line. The analysis of gene expression showed a significant decrease in genes related to muscle growth in GH/GHR genotype. It seems that concomitant overexpression of GH and GHR resulted in a strong decrease of the somatotrophic axis intracellular signaling by diminishing its principal transcription factor signal transducer and activator of transcription 5.1 (STAT5.1).
Collapse
Affiliation(s)
- Ana Cecilia Gomes Silva
- 1 Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG , Rio Grande-RS, Brazil
| | - Daniela Volcan Almeida
- 1 Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG , Rio Grande-RS, Brazil
| | - Bruna Felix Nornberg
- 1 Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG , Rio Grande-RS, Brazil
| | - Marcio Azevedo Figueiredo
- 1 Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG , Rio Grande-RS, Brazil
| | - Luis Alberto Romano
- 2 Laboratório de Imunologia e Patologia de Organismos Aquáticos, Estação Marinha de Aquicultura, Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG , Rio Grande-RS, Brazil
| | - Luis Fernando Marins
- 1 Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG , Rio Grande-RS, Brazil
| |
Collapse
|
11
|
Hosseini SM, Hajian M, Ostadhosseini S, Forouzanfar M, Abedi P, Jafarpour F, Gourabi H, Shahverdi AH, Vosough A, Ghanaie HR, Nasr-Esfahani MH. Contrasting effects of G1.2/G2.2 and SOF1/SOF2 embryo culture media on pre- and post-implantation development of non-transgenic and transgenic cloned goat embryos. Reprod Biomed Online 2015. [DOI: 10.1016/j.rbmo.2015.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Cui HX, Liu RR, Zhao GP, Zheng MQ, Chen JL, Wen J. Identification of differentially expressed genes and pathways for intramuscular fat deposition in pectoralis major tissues of fast-and slow-growing chickens. BMC Genomics 2012; 13:213. [PMID: 22646994 PMCID: PMC3420248 DOI: 10.1186/1471-2164-13-213] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 05/30/2012] [Indexed: 12/01/2022] Open
Abstract
Background Intramuscular fat (IMF) is one of the important factors influencing meat quality, however, for chickens, the molecular regulatory mechanisms underlying this trait have not yet been determined. In this study, a systematic identification of candidate genes and new pathways related to IMF deposition in chicken breast tissue has been made using gene expression profiles of two distinct breeds: Beijing-you (BJY), a slow-growing Chinese breed possessing high meat quality and Arbor Acres (AA), a commercial fast-growing broiler line. Results Agilent cDNA microarray analyses were conducted to determine gene expression profiles of breast muscle sampled at different developmental stages of BJY and AA chickens. Relative to d 1 when there is no detectable IMF, breast muscle at d 21, d 42, d 90 and d 120 (only for BJY) contained 1310 differentially expressed genes (DEGs) in BJY and 1080 DEGs in AA. Of these, 34–70 DEGs related to lipid metabolism or muscle development processes were examined further in each breed based on Gene Ontology (GO) analysis. The expression of several DEGs was correlated, positively or negatively, with the changing patterns of lipid content or breast weight across the ages sampled, indicating that those genes may play key roles in these developmental processes. In addition, based on KEGG pathway analysis of DEGs in both BJY and AA chickens, it was found that in addition to pathways affecting lipid metabolism (pathways for MAPK & PPAR signaling), cell junction-related pathways (tight junction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton), which play a prominent role in maintaining the integrity of tissues, could contribute to the IMF deposition. Conclusion The results of this study identified potential candidate genes associated with chicken IMF deposition and imply that IMF deposition in chicken breast muscle is regulated and mediated not only by genes and pathways related to lipid metabolism and muscle development, but also by others involved in cell junctions. These findings establish the groundwork and provide new clues for deciphering the molecular mechanisms underlying IMF deposition in poultry. Further studies at the translational and posttranslational level are now required to validate the genes and pathways identified here.
Collapse
Affiliation(s)
- Huan-Xian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2007. [DOI: 10.1089/zeb.2007.9977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|