1
|
Network pharmacology combined with GEO database identifying the mechanisms and molecular targets of Polygoni Cuspidati Rhizoma on Peri-implants. Sci Rep 2022; 12:8227. [PMID: 35581339 PMCID: PMC9114011 DOI: 10.1038/s41598-022-12366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
Peri-implants is a chronic disease leads to the bone resorption and loss of implants. Polygoni Cuspidati Rhizoma (PCRER), a traditional Chinese herbal has been used to treat diseases of bone metabolism. However, its mechanism of anti-bone absorption still remains unknown. We aimed to identify its molecular target and the mechanism involved in PCRER potential treatment theory to Peri-implants by network pharmacology. The active ingredients of PCRER and potential disease-related targets were retrieved from TCMSP, Swiss Target Prediction, SEA databases and then combined with the Peri-implants disease differential genes obtained in the GEO microarray database. The crossed genes were used to protein–protein interaction (PPI) construction and Gene Ontology (GO) and KEGG enrichment analysis. Using STRING database and Cytoscape plug-in to build protein interaction network and screen the hub genes and verified through molecular docking by AutoDock vina software. A total of 13 active compounds and 90 cross targets of PCRER were selected for analysis. The GO and KEGG enrichment analysis indicated that the anti-Peri-implants targets of PCRER mainly play a role in the response in IL-17 signaling, Calcium signaling pathway, Toll-like receptor signaling pathway, TNF signaling pathway among others. And CytoHubba screened ten hub genes (MMP9, IL6, MPO, IL1B, SELL, IFNG, CXCL8, CXCL2, PTPRC, PECAM1). Finally, the molecular docking results indicated the good binding ability with active compounds and hub genes. PCRER’s core components are expected to be effective drugs to treat Peri-implants by anti-inflammation, promotes bone metabolism. Our study provides new thoughts into the development of natural medicine for the prevention and treatment of Peri-implants.
Collapse
|
2
|
Gene Differential Expression and Interaction Networks Illustrate the Biomarkers and Molecular Mechanisms of Atherosclerotic Cerebral Infarction. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3912697. [PMID: 35070236 PMCID: PMC8769835 DOI: 10.1155/2022/3912697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022]
Abstract
Atherosclerotic cerebral infarction (ACI) seriously threatens the health of the senile patients, and the strategies are urgent for the diagnosis and treatment of ACI. This study investigated the mRNA profiling of the patients with ischemic stroke and atherosclerosis via excavating the datasets in the GEO database and attempted to reveal the biomarkers and molecular mechanism of ACI. In this study, GES16561 and GES100927 were obtained from Gene Expression Omnibus (GEO) database, and the related differentially expressed genes (DEGs) were analyzed with R language. Furthermore, the DEGs were analyzed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Besides, the protein-protein interaction (PPI) network of DEGs was analyzed by STRING database and Cytoscape. The results showed that 133 downregulated DEGs and 234 upregulated DEGs were found in GES16561, 25 downregulated DEGs and 104 upregulated DEGs were found in GSE100927, and 6 common genes were found in GES16561 and GES100927. GO enrichment analysis showed that the functional models of the common genes were involved in neutrophil activation, neutrophil degranulation, neutrophil activation, and immune response. KEGG enrichment analysis showed that the DEGs in both GSE100927 and GSE16561 were connected with the pathways including Cell adhesion molecules (CAMs), Cytokine-cytokine receptor interaction, Phagosome, Antigen processing and presentation, and Staphylococcus aureus infection. The PPI network analysis showed that 9 common DEGs were found in GSE100927 and GSE16561, and a cluster with 6 nodes and 12 edges was also identified by PPI network analysis. In conclusion, this study suggested that FCGR3A and MAPK pathways were connected with ACI.
Collapse
|
3
|
Liu Y, Zhang Z, Li W, Tian S. PECAM1 Combines With CXCR4 to Trigger Inflammatory Cell Infiltration and Pulpitis Progression Through Activating the NF-κB Signaling Pathway. Front Cell Dev Biol 2021; 8:593653. [PMID: 33425898 PMCID: PMC7786183 DOI: 10.3389/fcell.2020.593653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Pulpitis is a frequent bacterially driven inflammation featured with the local accumulation of inflammatory products in human dental pulps. A GEO dataset GSE16134 comprising data of inflamed dental pulp tissues was used for bioinformatics analyses. A protein-protein interaction (PPI) analysis suggested that chemokine receptor 4 (CXCR4) owned a high correlation with platelet endothelial cell adhesion molecule-1 (PECAM1). A rat model with pulpitis was established, and lipopolysaccharide (LPS)-induced human dental pulp fibroblasts (HDPFs) were used for in vitro experiments. Then, high expression of PECAM1 and CXCR4 was validated in the inflamed dental pulp tissues in rats and in LPS-induced HDPFs. Either downregulation of PECAM1 or CXCR4 suppressed inflammatory cell infiltration in inflamed tissues as well as the inflammation and apoptosis of HDPFs. A transcription factor myocyte-enhancer factor 2 (MEF2C) was predicted and validated as a positive regulator of either PECAM1 or CXCR4, which activated the NF-κB signaling pathway and promoted pulpitis progression. To sum up, this study suggested that MEF2C transcriptionally activates PECAM1 and CXCR4 to activate the B-cell and NF-κB signaling pathways, leading to inflammatory cell infiltration and pulpitis progression.
Collapse
Affiliation(s)
- Yonghong Liu
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyong Zhang
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenjing Li
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Songbo Tian
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Schacher NM, Raaz-Schrauder D, Pasutto F, Stumpfe FM, Tauchi M, Dietel B, Achenbach S, Urschel K. Impact of single nucleotide polymorphisms in the VEGFR2 gene on endothelial cell activation under non‑uniform shear stress. Int J Mol Med 2019; 44:1366-1376. [PMID: 31432097 PMCID: PMC6713417 DOI: 10.3892/ijmm.2019.4301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in vascular endothelial growth factor receptor 2 (VEGFR2) are associated with coronary artery disease, hypertension and myocardial infarction. However, their association with atherosclerosis remains to be fully elucidated. The purpose of the present study was to determine whether SNPs are involved in atherogenesis, by analyzing their impact on human umbilical vein endothelial cells (HUVECs) under laminar and non‑uniform shear stress in a well‑established in vitro model that simulates shear stress‑induced proatherogenic processes at vessel bifurcations. All experiments were performed using freshly isolated HUVECs. Three SNPs in the VEGFR2 gene (rs1870377 T>A, rs2071559 A>G and rs2305948 C>T) were genotyped and the expression levels of VEGFR2 were semi‑quantitatively determined using western blotting. Subsequently, the HUVECs were seeded in bifurcating flow‑through cell culture slides and flow (9.6 ml/min) was applied for 19 h, including tumor necrosis factor‑α stimulation during the final 2 h of flow. The protein expression levels of VCAM‑1, E‑selectin and VEGFR2 and the adhesion of THP‑1 cells were analyzed in laminar and non‑uniform shear stress regions. Data were analyzed for associations with the respective SNPs. The total expression of VEGFR2 was significantly lower under non‑uniform shear stress than under laminar shear stress conditions, independent of the genotype. The expression of VEGFR2 between the different shear stress patterns was not significantly altered by the different SNPs. The expression levels of VCAM‑1 and E‑selectin were lower in the A/A genotype compared with those in other genotypes in rs1870377 T>A and rs2071559 A>G. In conclusion, the results suggested that SNPs within the VEGFR2 gene have a significant impact on shear stress‑related endothelial activation.
Collapse
Affiliation(s)
- Nora M Schacher
- Department of Medicine 2‑Cardiology and Angiology, Erlangen University Hospital, Friedrich‑Alexander University Erlangen‑Nürnberg, D‑91054 Erlangen, Germany
| | - Dorette Raaz-Schrauder
- Department of Medicine 2‑Cardiology and Angiology, Erlangen University Hospital, Friedrich‑Alexander University Erlangen‑Nürnberg, D‑91054 Erlangen, Germany
| | - Francesca Pasutto
- Institute of Human Genetics, Friedrich‑Alexander University Erlangen‑Nürnberg, D‑91051 Erlangen, Germany
| | - Florian M Stumpfe
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen‑EMN, Friedrich‑Alexander University Erlangen‑Nürnberg, D‑91054 Erlangen, Germany
| | - Miyuki Tauchi
- Department of Medicine 2‑Cardiology and Angiology, Erlangen University Hospital, Friedrich‑Alexander University Erlangen‑Nürnberg, D‑91054 Erlangen, Germany
| | - Barbara Dietel
- Department of Medicine 2‑Cardiology and Angiology, Erlangen University Hospital, Friedrich‑Alexander University Erlangen‑Nürnberg, D‑91054 Erlangen, Germany
| | - Stephan Achenbach
- Department of Medicine 2‑Cardiology and Angiology, Erlangen University Hospital, Friedrich‑Alexander University Erlangen‑Nürnberg, D‑91054 Erlangen, Germany
| | - Katharina Urschel
- Department of Medicine 2‑Cardiology and Angiology, Erlangen University Hospital, Friedrich‑Alexander University Erlangen‑Nürnberg, D‑91054 Erlangen, Germany
| |
Collapse
|
5
|
Tajbakhsh A, Gheibi Hayat SM, Butler AE, Sahebkar A. Effect of soluble cleavage products of important receptors/ligands on efferocytosis: Their role in inflammatory, autoimmune and cardiovascular disease. Ageing Res Rev 2019; 50:43-57. [PMID: 30639340 DOI: 10.1016/j.arr.2019.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
Abstract
Efferocytosis, the clearance of apoptotic cells (ACs), is a physiologic, multifaceted and dynamic process and a fundamental mechanism for the preservation of tissue homeostasis by avoiding unwanted inflammation and autoimmune responses through special phagocytic receptors. Defective efferocytosis is associated with several disease states, including cardiovascular disease and impaired immune surveillance, as occurs in cancer and autoimmune disease. A major cause of defective efferocytosis is non-functionality of surface receptors on either the phagocytic cells or the ACs, such as TAM family tyrosine kinase, which turns to a soluble form by cleavage/shedding or alternative splicing. Recently, soluble forms have featured prominently as potential biomarkers, indicative of prognosis and enabling targeted therapy using several commonly employed drugs and inhibitors, such as bleomycin, dexamethasone, statins and some matrix metalloproteinase inhibitors such as TAPI-1 and BB3103. Importantly, to design drug carriers with enhanced circulatory durability, the adaptation of soluble forms of physiological receptors/ligands has been purported. Research has shown that soluble forms are more effective than antibody forms in enabling targeted treatment of certain conditions, such as autoimmune diseases. In this review, we sought to summarize the current knowledge of these soluble products, how they are generated, their interactions, roles, and their potential use as biomarkers in prognosis and treatment related to inflammatory, cardiovascular, and autoimmune diseases.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Tajbakhsh A, Rezaee M, Kovanen PT, Sahebkar A. Efferocytosis in atherosclerotic lesions: Malfunctioning regulatory pathways and control mechanisms. Pharmacol Ther 2018; 188:12-25. [DOI: 10.1016/j.pharmthera.2018.02.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Abraham V, Cao G, Parambath A, Lawal F, Handumrongkul C, Debs R, DeLisser HM. Involvement of TIMP-1 in PECAM-1-mediated tumor dissemination. Int J Oncol 2018; 53:488-502. [PMID: 29845213 PMCID: PMC6017270 DOI: 10.3892/ijo.2018.4422] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/17/2018] [Indexed: 02/07/2023] Open
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1) is expressed on the vascular endothelium and has been implicated in the late progression of metastatic tumors. The activity of PECAM-1 appears to be mediated by modulation of the tumor microenvironment (TME) and promotion of tumor cell proliferation, rather than through the stimulation of tumor angiogenesis. The present study aimed to extend those initial findings by indicating that the presence of functional PECAM-1 on the endothelium promotes a proliferative tumor cell phenotype in vivo, as well as in tumor cell (B16-F10 melanoma and 4T1 breast cancer cell lines) co-culture assays with mouse endothelial cells (ECs) or a surrogate EC line (REN-MP). The pro-proliferative effects were mediated by soluble endothelial-derived factors that were dependent on PECAM-1 homophilic ligand interactions, but which were independent of PECAM-1-dependent signaling. Further analysis of the conditioned media obtained from tumor/EC and tumor/REN-MP co-cultures identified TIMP metallopeptidase inhibitor-1 (TIMP-1) as a PECAM-1-regulated factor, the targeting of which in the tumor cell/REN-MP system inhibited tumor cell proliferation. In addition, TIMP-1 expression was decreased in metastatic tumors from the lungs of PECAM-1-null mice, thus providing evidence of the in vivo significance of co-culture studies. Taken together, these studies indicated that endothelial PECAM-1, through PECAM-1-dependent homophilic binding interactions, may induce release of TIMP-1 from the endothelium into the TME, thus leading to increased tumor cell proliferation.
Collapse
Affiliation(s)
- Valsamma Abraham
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| | - Andrew Parambath
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fareedah Lawal
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Robert Debs
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Horace M DeLisser
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Lu WH, Huang SJ, Yuh YS, Hsieh KS, Tang CW, Liou HH, Ger LP. Platelet Endothelial Cell Adhesion Molecule-1 Gene Polymorphisms are Associated with Coronary Artery Lesions in the Chronic Stage of Kawasaki Disease. ACTA CARDIOLOGICA SINICA 2017; 33:273-284. [PMID: 28559658 DOI: 10.6515/acs20161010a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Kawasaki disease is the most common cause of pediatric acquired heart disease. The role of platelet endothelial cell adhesion molecule-1 in the inflammatory process has been documented. To date, no report has investigated the relationship between coronary artery lesions of Kawasaki disease and platelet endothelial cell adhesion molecule-1 polymorphisms. METHODS A total of 114 Kawasaki disease children with coronary artery lesions and 185 Kawasaki disease children without coronary artery lesions were recruited in this study. The TaqMan assay was conducted to identify the genotype in this case-control study. RESULTS In three single nucleotide polymorphisms (Leu125Val, Ser563Asn, and Arg670Gly) of platelet endothelial cell adhesion molecule-1, we found that the Leu-Ser-Arg haplotype was associated with a significantly increased risk for coronary artery lesions in the chronic stage (odds ratio 3.05, 95% confidence interval 1.06-8.80, p = 0.039), but not for coronary artery lesions in the acute stage. Analysis based on the diplotypes of platelet endothelial cell adhesion molecule-1 also showed that Kawasaki disease with one or two alleles of Leu-Ser-Arg had a significantly increased risk of chronic coronary artery lesions (odds ratio 3.38, 95% confidence interval 1.11-10.28, p = 0.032) and had increased platelet counts after Kawasaki disease was diagnosed, as compared to those with other diplotypes. CONCLUSIONS The haplotype of platelet endothelial cell adhesion molecule-1 Leu-Ser-Arg might be associated with the increased platelet counts and the following risk of chronic coronary artery lesions in a dominant manner in Kawasaki disease.
Collapse
Affiliation(s)
- Wen-Hsien Lu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung.,National Yang-Ming University, Taipei.,Fooyin University
| | - Sin-Jhih Huang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Yeong-Seng Yuh
- Department of Pediatrics, Cheng Hsin General Hospital, Taipei
| | - Kai-Sheng Hsieh
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - Chia-Wan Tang
- Department of Pediatrics, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung
| | - Huei-Han Liou
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Luo-Ping Ger
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Završnik M, Kariž S, Makuc J, Šeruga M, Cilenšek I, Petrovič D. PECAM-1 Leu125Val (rs688) Polymorphism and Diabetic Nephropathy in Caucasians with Type 2 Diabetes Mellitus. Anal Cell Pathol (Amst) 2016; 2016:3152967. [PMID: 28116228 PMCID: PMC5225318 DOI: 10.1155/2016/3152967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/07/2016] [Indexed: 12/30/2022] Open
Abstract
Objectives. Platelet endothelial cell adhesion molecule-1 (PECAM-1) plays a key role in the transendothelial migration of circulating leukocytes during inflammation and in the maintenance of vascular endothelial integrity. We hypothesized that genetic variation in PECAM-1 gene could be associated with diabetic nephropathy (DN) and with the level of soluble PECAM-1 in Caucasians with type 2 diabetes mellitus (T2DM). Design and Methods. We analyzed the rs688 single nucleotide polymorphism of PECAM-1 gene C373G (Leu125Val) at exon 3, which encodes the first extracellular Ig-like domain that mediates the homophilic binding of PECAM-1, in 276 T2DM subjects with documented DN (cases) and 375 T2DM subjects without DN (controls), using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) strategy. Level of plasma soluble PECAM-1 (sPECAM-1) was measured by ELISA in a subpopulation of 120 diabetics with DN. Results. We found no association between the Leu125Val polymorphism and DN in subjects with T2DM. Likewise, the Leu125Val polymorphism was not associated with serum sPECAM-1 levels in a subpopulation of 120 diabetics with DN. Conclusion. The Leu125Val polymorphism of PECAM-1 and the level of sPECAM-1 are not associated with DN in T2DM subjects of Slovenian origin.
Collapse
Affiliation(s)
- Matej Završnik
- University Medical Centre Maribor, Clinic for Internal Medicine, Department for Diabetes and Metabolic Diseases, Maribor, Slovenia
| | - Stojan Kariž
- General Hospital Izola, Department of Internal Medicine, Izola, Slovenia
| | - Jana Makuc
- General Hospital Slovenj Gradec, Department of Internal Medicine, Slovenj Gradec, Slovenia
| | - Maja Šeruga
- General Hospital Murska Sobota, Department of Internal Medicine, Murska Sobota, Slovenia
| | - Ines Cilenšek
- Faculty of Medicine, Institute of Histology and Embryology, University of Ljubljana, Ljubljana, Slovenia
| | - Daniel Petrovič
- Faculty of Medicine, Institute of Histology and Embryology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Endothelial PECAM-1 and its function in vascular physiology and atherogenic pathology. Exp Mol Pathol 2016; 100:409-15. [DOI: 10.1016/j.yexmp.2016.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/20/2016] [Accepted: 03/31/2016] [Indexed: 12/22/2022]
|
11
|
LI GANG, HAN ZONGLIN, DONG HEGUI, ZHANG XIA, KONG XIANGQIAN, JIN XING. Platelet endothelial cell adhesion molecule-1 gene 125C/G polymorphism is associated with deep vein thrombosis. Mol Med Rep 2015; 12:2203-10. [DOI: 10.3892/mmr.2015.3586] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 12/19/2014] [Indexed: 11/06/2022] Open
|
12
|
Song Y, Li Q, Long L, Zhang N, Liu Y. Asn563Ser polymorphism of CD31/PECAM-1 is associated with atherosclerotic cerebral infarction in a southern Han population. Neuropsychiatr Dis Treat 2015; 11:15-20. [PMID: 25565847 PMCID: PMC4274145 DOI: 10.2147/ndt.s75065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND CD31, also called platelet endothelial cell adhesion molecule-1 (PECAM-1), is thought to play a role in the pathological mechanisms of atherosclerosis. Leu125Val polymorphism and elevated plasma levels of soluble PECAM-1 (sPECAM-1) were found to be associated with cerebral infarction. Our aim was to investigate the association between the Asn563Ser polymorphism of CD31/PECAM-1, plasma level of sPECAM-1, and the risk of atherosclerotic cerebral infarction (ACI) in the southern Han population of the People's Republic of China. SUBJECTS AND METHODS A total of 147 subjects with ACI and 114 controls were enrolled in the study. The Asn563Ser CD31/PECAM-1 polymorphism was detected using the polymerase chain reaction-restriction fragment length polymorphism method. The plasma spECAM-1 level was measured using the enzyme-linked immunosorbent assay method. RESULTS In this study, statistically significant differences in Asn563Ser genotype and allele distribution were found between the cases and controls (P<0.05). Furthermore, logistic regression analysis showed that the GG genotype is associated with increase in ACI risk (odds ratio =4.862, P<0.001). The plasma level of sPECAM-1 was associated with ACI (odds ratio =1.431, P=0.038). In both the ACI and the control groups, the plasma sPECAM-1 level in subjects with the GG genotype was higher than that in subjects carrying the AA or GA genotype (P<0.05). CONCLUSION Our study showed that the Asn563Ser polymorphism of CD31/PECAM-1 gene and elevated plasma sPECAM-1 level are related to ACI risk in the southern Han population of People's Republic of China.
Collapse
Affiliation(s)
- Yanmin Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Qunfang Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Ning Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Yunhai Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
13
|
The association of L-selectin polymorphisms with L-selectin serum levels and risk of ischemic stroke. J Thromb Thrombolysis 2011; 32:110-5. [PMID: 21465128 DOI: 10.1007/s11239-011-0587-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
L-selectin is a member of the selectin family of cell adhesion molecules which are important in the transient attachment of leukocytes to endothelial cells, which plays a role in inflammation processes and is one of the earliest events in the pathogenesis of atherosclerosis. No studies have examined the association of this polymorphism with ischemic stroke. Therefore, we investigated that L-selectin gene polymorphism and its soluble level are associated with ischemic stroke in Chinese population. We analyzed single nucleotide polymorphisms of L-selectin gene Pro213Ser (P213S) in 265 patients with ischemic stroke and 280 age and sex matched controls, using PCR-RFLP and DNA sequencing method, while soluble L-selectin levels were measured by ELISA. There were significant differences in the genotype and allele frequencies of L-selectin gene P213S polymorphism between the group of patients with ischemic stroke and the control group (P < 0.05). Soluble L-selectin levels were increased in patients with ischemic stroke compared with controls (P < 0.01). Moreover, The P213S polymorphism of L-selectin was significantly associated with sL-selectin levels, the serum levels of L-selectin PP genotype carriers was significantly higher than no carriers in patients with ischemic stroke (P < 0.05). The P213S polymorphism of L-selectin and its sL-selectin levels are associated with ischemic stroke in Chinese population. Our data suggests that L-selectin gene may play a role in the development of ischemic stroke.
Collapse
|
14
|
Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease. Apoptosis 2010; 15:1124-36. [PMID: 20552278 DOI: 10.1007/s10495-010-0516-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent evidence in humans indicate that defective phagocytic clearance of dying cells is linked to progression of advanced atherosclerotic lesions, the precursor to atherothrombosis, ischemic heart disease, and leading cause of death in the industrialized world. During atherogenesis, apoptotic cell turnover in the vascular wall is counterbalanced by neighboring phagocytes with high clearance efficiency, thereby limiting cellularity and maintaining lesion integrity. However, as lesions mature, phagocytic removal of apoptotic cells (efferocytosis) becomes defective, leading to secondary necrosis, expansion of plaque necrotic cores, and susceptibility to rupture. Recent genetic causation studies in experimental rodents have implicated key molecular regulators of efferocytosis in atherosclerotic progression. These include MER tyrosine kinase (MERTK), milk fat globule-EGF factor 8 (MFGE8), and complement C1q. At the cellular level, atheromata are infiltrated by a heterogenous population of professional phagocytes, comprised of monocytes, differentiated macrophages, and CD11c(+) dendritic-like cells. Each cell type is characterized by disparate clearance efficiencies and varying activities of key phagocytic signaling molecules. It is in this context that we outline a working model whereby plaque necrosis and destabilization is jointly promoted by (1) direct inhibition of core phagocytic signaling pathways and (2) expansion of phagocyte subsets with poor clearance capacity. Towards identifying targets for promoting efficient apoptotic cell clearance and resolving inflammation in atherosclerosis and during ischemic heart disease and post myocardial infarction, this review will discuss potential in vivo suppressors of efferocytosis at each stage of clearance and how these putative interventional targets may differentially affect uptake at the level of vascular phagocyte subsets.
Collapse
|
15
|
Bayat B, Werth S, Sachs UJH, Newman DK, Newman PJ, Santoso S. Neutrophil transmigration mediated by the neutrophil-specific antigen CD177 is influenced by the endothelial S536N dimorphism of platelet endothelial cell adhesion molecule-1. THE JOURNAL OF IMMUNOLOGY 2010; 184:3889-96. [PMID: 20194726 DOI: 10.4049/jimmunol.0903136] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The human neutrophil-specific adhesion molecule CD177 (also known as the NB1 alloantigen) becomes upregulated on the cell surface in a number of inflammatory settings. We recently showed that CD177 functions as a novel heterophilic counterreceptor for the endothelial junctional protein PECAM-1 (CD31), an interaction that is mediated by membrane-proximal PECAM-1 IgD 6, which is known to harbor an S(536)N single nucleotide polymorphism of two major isoforms V(98)N(536)G(643) and L(98)S(536)R(643) and a yet-to-be-determined region on CD177. In vitro transendothelial migration experiments revealed that CD177(+) neutrophils migrated significantly faster through HUVECs expressing the LSR, compared with the VNG, allelic variant of PECAM-1 and that this correlated with the decreased ability of anti-PECAM-1 Ab of ITIM tyrosine phosphorylation in HUVECs expressing the LSR allelic variant relative to the VNG allelic variant. Moreover, engagement of PECAM-1 with rCD177-Fc (to mimic heterophilic CD177 binding) suppressed Ab-induced tyrosine phosphorylation to a greater extent in cells expressing the LSR isoform compared with the VNG isoform, with a corresponding increased higher level of beta-catenin phosphorylation. These data suggest that heterophilic PECAM-1/CD177 interactions affect the phosphorylation state of PECAM-1 and endothelial cell junctional integrity in such a way as to facilitate neutrophil transmigration in a previously unrecognized allele-specific manner.
Collapse
Affiliation(s)
- Behnaz Bayat
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| | | | | | | | | | | |
Collapse
|