1
|
Ahmadi F, Shabrandi N, Hosseinzadeh L, Azizian H. Two DNA binding modes of a zinc-metronidazole and biological evaluation as a potent anti-cancer agent. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:449-480. [PMID: 30689502 DOI: 10.1080/15257770.2018.1562073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A complex of metronidazole (MTZ) with zinc ion was synthesized and characterized by UV-Vis, Fourier transform infrared (FT-IR), 1H-NMR, X-ray crystallography and thermal gravimetric-differential thermal analysis (TG-DTA). The cytotoxicity effect of the synthesized complex investigated over SKNMC, A549, MCF-7, and MCDK cell lines and the results have shown that it has high cytotoxic potential over cancer cell lines. In order to clarify the mechanism of cell cytotoxicity, the oxidative stress and binding of the complex to the calf thymus-DNA studied by evaluating the intrinsic binding constant and defining thermodynamic parameters of complex over the DNA accompanying with in silico molecular modeling method. For this purpose, the complex optimized at the B3LYP/LANL2DZ level and docked over the DNA structure. The results revealed that the metronidazole-zinc complex interacted with DNA via hydrogen binding and electrostatic interaction to the minor groove region and phosphate backbone of DNA, respectively.
Collapse
Affiliation(s)
- Farhad Ahmadi
- a Department of Medicinal Chemistry Faculty of Pharmacy , Kermanshah University of Medical Sciences , Kermanshah , Iran.,b Physiology Research Center Iran University of Medical Sciences , Tehran , Iran.,c Department of Medicinal Chemistry Faculty of Pharmacy-International Campus , Iran University of Medical Sciences , Tehran , Iran
| | - Nosaibeh Shabrandi
- a Department of Medicinal Chemistry Faculty of Pharmacy , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Leilah Hosseinzadeh
- d Student Research Committee, Faculty of Pharmacy , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Homa Azizian
- c Department of Medicinal Chemistry Faculty of Pharmacy-International Campus , Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
2
|
Ahmad A, Ahmad M. Deciphering the mechanism of interaction of edifenphos with calf thymus DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:244-251. [PMID: 28732283 DOI: 10.1016/j.saa.2017.07.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Edifenphos is an important organophosphate pesticide with many antifungal and anti-insecticidal properties but it may cause potential hazards to human health. In this work, we have tried to explore the binding mode of action and mechanism of edifenphos to calf thymus DNA (CT-DNA). Several experiments such as ultraviolet-visible absorption spectra and emission spectroscopy showed complex formation between edifenphos and CT-DNA and low binding constant values supporting groove binding mode. These results were further confirmed by circular dichroism (CD), CT-DNA melting studies, viscosity measurements, density functional theory and molecular docking. CD study suggests that edifenphos does not alter native structure of CT-DNA. Isothermal calorimetry reveals that binding of edifenphos with CT-DNA is enthalpy driven process. Competitive binding assay and effect of ionic strength showed that edifenphos binds to CT-DNA via groove binding manner. Hence, edifenphos is a minor groove binder preferably interacting with A-T regions with docking score -6.84kJ/mol.
Collapse
Affiliation(s)
- Ajaz Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Masood Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
3
|
Proposed binding mechanism of galbanic acid extracted from Ferula assa-foetida to DNA. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 166:63-73. [PMID: 27886594 DOI: 10.1016/j.jphotobiol.2016.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022]
Abstract
Recently, galbanic acid (GA), a sesquiterpenoid coumarin, has been introduced as an apoptotic and geno/cytotoxicity agent. In the present study, GA has been extracted from Ferula assa-foetida, a native medicinal plant in Iran, and characterized by 1H NMR, mass spectroscopy. Additionally, spectroscopic studies have been performed in order to investigate its DNA-interaction mode. The electrochemical behavior of GA has been studied by cyclic voltammetry (CV) in various scan rates. In neutral media (pH=7.3) one irreversible cathodic peak was obtained at -1.46 V, while in higher scan rates an irreversible one was determined at -1.67 V. According to the voltametric data GA can be easily reduced by 2e-/2H+ mechanism at hanging mercury drop electrode (HMDE). The interaction of GA with ct-DNA was evaluated by CV, differential pulse voltammetry (DPV), enhancement fluorescence, UV-Vis, FT-IR spectroscopy and molecular docking. The molecular docking study shows that the GA interacts to DNA on partial intercalation mode via DNA groove binding and forms a complex by van der Waals and electroastatic interactions. In addition, the thermodynamic parameters of GA-DNA complex were investigated with ΔH°, ΔS° and ΔG° values of 15.81KJmol-1, 133.95Jmol-1 and -23.10KJmol-1, respectively. All data revealed that the GA is binding to DNA by van der Waals and electrostatic interactions through the partial intercalations from the DNA's grooves.
Collapse
|
4
|
Ahmadi F, Valadbeigi S, Sajjadi SE, Shokoohinia Y, Azizian H, Taheripak G. Grandivittin as a natural minor groove binder extracted from Ferulago macrocarpa to ct-DNA, experimental and in silico analysis. Chem Biol Interact 2016; 258:89-101. [PMID: 27569860 DOI: 10.1016/j.cbi.2016.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 08/06/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022]
Abstract
Ferulago macrocarpa (Fenzl) Boiss., is an endemic medicinal herb of Iran. In this study a dihydrofuranocoumarin called grandivittin (GRA) was separate and purified from Ferulago macrocarpa (Fenzl) Boiss, and characterized by (1)H NMR and Mass spectroscopic methods. The electrochemical behavior of GRA was evaluated by cyclic voltammetry (CV). The interaction of GRA with calf thymus double strand deoxyribonucleic acid (ct-DNA), was evaluated by CV, differential pulse voltammetry (DPV), fluorescence, UV-Vis, FT-IR and molecular modeling methods. The thermodynamic parameters of GRA-DNA complex were measured and reported as: ΔH = 15.04 kJ mol(-1), ΔS = 105.54 J mol(-1) and ΔG = -15.62 kJ mol(-1). Docking simulation was performed to investigate the probable binding mode of GRA to various DNA, too. The polymerase extension study was performed using real-time PCR to confirm the inhibitory effect of GRA on polymerase extension activity as a mirror of binding to ct-DNA. However, all data showed that the grooves binding especially minor groove between GRA and ct-DNA is more predominant rather than other binding modes.
Collapse
Affiliation(s)
- F Ahmadi
- Department of Medicinal Chemistry, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy - International Campus, Iran University of Medical Sciences, Tehran, Iran.
| | - S Valadbeigi
- Department of Medicinal Chemistry, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - S E Sajjadi
- Department of Pharmacognosy, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Y Shokoohinia
- Department of Pharmacognosy, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - H Azizian
- Department of Medicinal Chemistry, Faculty of Pharmacy - International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - G Taheripak
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Tao M, Zhang G, Pan J, Xiong C. Deciphering the groove binding modes of tau-fluvalinate and flumethrin with calf thymus DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 155:28-37. [PMID: 26571092 DOI: 10.1016/j.saa.2015.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
Tau-fluvalinate (TFL) and flumethrin (FL), widely used in agriculture and a class of synthetic pyrethroid pesticides with a similar structure, may cause a potential security risk. Herein, the modes of binding in vitro of TFL and FL with calf thymus DNA (ctDNA) were characterized by fluorescence, UV-vis absorption, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy with the aid of viscosity measurements, melting analyses and molecular docking studies. The fluorescence titration indicated that both TFL and FL bound to ctDNA forming complexes through hydrogen bonding and van der Waals forces. The binding constants of TFL and FL with ctDNA were in the range of 10(4)Lmol(-1), and FL exhibited a higher binding propensity than TFL. The iodide quenching effect, single/double-stranded DNA effects, and ctDNA melting and viscosity measurements demonstrated that the binding of both TFL and FL to ctDNA was groove mode. The FT-IR analyses suggested the A-T region of the minor groove of ctDNA as the preferential binding for TFL and FL, which was confirmed by the displacement assays with Hoechst 33258 probe, and the molecular docking visualized the specific binding. The changes in CD spectra indicated that both FL and TFL induced the perturbation on the base stacking and helicity of B-DNA, but the disturbance caused by FL was more obvious. Gel electrophoresis analyses indicated that both TFL and FL did not cause significant DNA cleavage. This study provides novel insights into the binding properties of TFL/FL with ctDNA and its toxic mechanisms.
Collapse
Affiliation(s)
- Mo Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, 235, Nanjing East Road, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235, Nanjing East Road, Nanchang 330047, China.
| | - Junhui Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, 235, Nanjing East Road, Nanchang 330047, China
| | - Chunhong Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, 235, Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
6
|
Daneshmehr MA, Ahmadi F, Ahmadi B, Shakiba E. Deciphering the binding mode of dinitramine herbicide to ct-DNA, a thermodynamic discussion. FOOD AGR IMMUNOL 2015. [DOI: 10.1080/09540105.2015.1055555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
7
|
Tao M, Zhang G, Xiong C, Pan J. Characterization of the interaction between resmethrin and calf thymus DNA in vitro. NEW J CHEM 2015. [DOI: 10.1039/c4nj02321h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Resmethrin preferentially binds to the G–C rich region of the ctDNA groove, and the UV-vis spectral matrix is decomposed by MCR-ALS.
Collapse
Affiliation(s)
- Mo Tao
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Chunhong Xiong
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Junhui Pan
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| |
Collapse
|
8
|
Ghasemi S, Ahmadi F. The study of binding of methyl tert-butyl ether to human telomeric G-quadruplex and calf thymus DNA by gas chromatography, a thermodynamic discussion. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 971:112-9. [DOI: 10.1016/j.jchromb.2014.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/30/2014] [Accepted: 09/09/2014] [Indexed: 12/27/2022]
|
9
|
Ahmadi F, Ghanbari K. Proposed model for binding of permethrin and deltamethrin insecticides with ct-DNA, a structural comparative study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 106:136-145. [PMID: 24836888 DOI: 10.1016/j.ecoenv.2014.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 06/03/2023]
Abstract
In this work, the interaction of two synthetic pyrethroid insecticides, permethrin (PER) and deltamethrin (DEL), with ct-DNA has been studied by cyclic voltammetry (CV), circular dichroism (CD), competitive fluorescence, atomic force microscopy (AFM), UV-vis spectroscopy, thermodynamic measurements, Fourier-transform infra-red (FT-IR), high performance liquid chromatography (HPLC) and two-layered ONIOM (our N-layered integrated molecular orbital+molecular mechanics) (DFT B3LYP, 6-31++G(d, p):UFF) molecular modeling methods. The last four methods were also utilized to study the binding of DEL with DNA. The results revealed that the PER may interact through partial intercalation and groove binding process while the PER only interacts through groove binding. Finally, the insecticides structure effect on interaction is discussed.
Collapse
Affiliation(s)
- F Ahmadi
- Novel Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 67145-1673, Islamic Republic of Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 67145-1673, Islamic Republic of Iran
| | - K Ghanbari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Azad University of Tehran, Islamic Republic of Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 67145-1673, Islamic Republic of Iran.
| |
Collapse
|
10
|
Ahmadi F, Jafari B, Rahimi-Nasrabadi M, Ghasemi S, Ghanbari K. Proposed model for in vitro interaction between fenitrothion and DNA, by using competitive fluorescence, (31)P NMR, (1)H NMR, FT-IR, CD and molecular modeling. Toxicol In Vitro 2012; 27:641-50. [PMID: 23153512 DOI: 10.1016/j.tiv.2012.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 10/24/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
Abstract
In this work we proposed a model for in vitro interaction of fenitrothion (FEN) with calf thymus-DNA by combination of multispectroscopic and two dimensional molecular modeling (ONIOM) methods. The circular dichroism results showed that FEN changes the conformation of B-DNA and caused some changes to C-DNA form. The FT-IR results confirmed a partial intercalation between FEN and edges of all base pairs. The competitive fluorescence, using methylene blue as fluorescence probe, in the presence of increasing amounts of FEN, revealed that FEN is able to release the non-intercalated methylene blue from the DNA. The weak chemical shift and peak broadening of (1)H NMR spectrum of FEN in the presence of DNA confirmed a non-intercalation mode. The (31)P NMR showed that FEN interacts more with DNA via its -NO2 moiety. The ONIOM, based on the hybridization of QM/MM (DFT, 6.31++G (d,p)/UFF) methodology, was also performed by Gaussian 2003 package. The results revealed that the interaction is base sequence dependent, and FEN interacts more with AT base sequences.
Collapse
Affiliation(s)
- Farhad Ahmadi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | | | | | | |
Collapse
|