1
|
Park SH, Choi SH, Park HY, Ko J, Yoon JS. Role of Lysyl Oxidase-Like Protein 3 in the Pathogenesis of Graves' Orbitopathy in Orbital Fibroblasts. Invest Ophthalmol Vis Sci 2024; 65:33. [PMID: 39546293 DOI: 10.1167/iovs.65.13.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Purpose The lysyl oxidase (LOX) family has been implicated in the pathogenesis of diseases caused by inflammation and fibrosis. Therefore, we aimed to examine the role of lysyl oxidase-like protein 3 (LOXL3) in Graves' orbitopathy (GO) pathogenesis and its potential as a treatment target. Methods Quantitative real-time polymerase chain reaction compared the transcript levels of the five LOX family subtypes in orbital tissue explants obtained from patients with GO (n = 18) and healthy controls (n = 15). The effects of LOXL3 inhibition on interleukin (IL)-1β-induced proinflammatory cytokines, transforming growth factor (TGF)-β-induced profibrotic proteins, intracellular signaling molecules, and adipogenic markers were evaluated using Western blotting. Adipogenic differentiation was identified using Oil Red O staining. Results LOX and LOXL3 transcript levels were high in GO tissues. Stimulation with IL-1β, TGF-β, and insulin-like growth factor-1 significantly increased LOXL3 messenger RNA expression in GO fibroblasts. Furthermore, silencing LOXL3 attenuated the IL-1β-induced production of proinflammatory cytokines (IL-6, IL-8, and intercellular adhesion molecule-1) and TGF-β-induced production of profibrotic proteins (fibronectin, collagen 1α, and alpha-smooth muscle actin). It also reduced the IL-1β or TGF-β-induced expression of phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells, protein kinase B, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. Additionally, LOXL3 silencing suppressed adipocyte differentiation and the expression of adipogenic transcription factors (leptin, AP-2, peroxisome proliferator-activated receptor gamma, and CCAAT/enhancer-binding protein). Conclusions LOXL3 is crucial in GO pathogenesis. LOXL3 inhibition reduced inflammatory cytokine production, fibrotic protein expression, and fibroblast differentiation into adipocytes. This study highlights LOXL3 as a potential therapeutic target for GO.
Collapse
Affiliation(s)
| | - Soo Hyun Choi
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Young Park
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Chen Z, Li YY, Liu X. Copper homeostasis and copper-induced cell death: Novel targeting for intervention in the pathogenesis of vascular aging. Biomed Pharmacother 2023; 169:115839. [PMID: 37976889 DOI: 10.1016/j.biopha.2023.115839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Copper-induced cell death, also known as cuproptosis, is distinct from other types of cell death such as apoptosis, necrosis, and ferroptosis. It can trigger the accumulation of lethal reactive oxygen species, leading to the onset and progression of aging. The significant increases in copper ion levels in the aging populations confirm a close relationship between copper homeostasis and vascular aging. On the other hand, vascular aging is also closely related to the occurrence of various cardiovascular diseases throughout the aging process. However, the specific causes of vascular aging are not clear, and different living environments and stress patterns can lead to individualized vascular aging. By exploring the correlations between copper-induced cell death and vascular aging, we can gain a novel perspective on the pathogenesis of vascular aging and enhance the prognosis of atherosclerosis. This article aims to provide a comprehensive review of the impacts of copper homeostasis on vascular aging, including their effects on endothelial cells, smooth muscle cells, oxidative stress, ferroptosis, intestinal flora, and other related factors. Furthermore, we intend to discuss potential strategies involving cuproptosis and provide new insights for copper-related vascular aging.
Collapse
Affiliation(s)
- Zhuoying Chen
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Yuan-Yuan Li
- Department of Nursing, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| |
Collapse
|
3
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
4
|
Huang H, Kong L, Luan S, Qi C, Wu F. Ligustrazine Suppresses Platelet-Derived Growth Factor-BB-Induced Pulmonary Artery Smooth Muscle Cell Proliferation and Inflammation by Regulating the PI3K/AKT Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:437-459. [PMID: 33622214 DOI: 10.1142/s0192415x21500208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a serious pulmonary vascular disease. Excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) plays an important role in the course of this disease. Ligustrazine is an alkaloid monomer extracted from the rhizome of the herb Ligusticum chuanxiong. It is often used to treat cardiovascular diseases, but its effect on PAH has rarely been reported. This study aims to explore the protective effect and mechanism of ligustrazine on PAH. In the in vivo experiment, monocrotaline (MCT) was used to induce PAH in rats, and then ligustrazine (40, 80, 160 mg/kg/day) or sildenafil (25 mg/kg/day) was administered. Four weeks later, hemodynamic changes, right ventricular hypertrophy index, lung morphological characteristics, inflammatory factors, phosphoinositide 3-kinase (PI3K), and AKT expression were evaluated. In addition, primary rat PASMCs were extracted by the tissue adhesion method, a proliferation model was established with platelet-derived growth factor-BB (PDGF-BB), and the cells were treated with ligustrazine to investigate its effects on cell proliferation, inflammation, and cell cycle distribution. The results indicate that ligustrazine can markedly alleviate right ventricular systolic pressure, right ventricular hypertrophy, pulmonary vascular remodeling, and inflammation caused by MCT, and that it decreased PI3K and AKT phosphorylation expression. Moreover, ligustrazine can inhibit the proliferation and inflammation of PASMCs and arrest the progression of G0/G1 to S phase through the PI3K/AKT signaling pathway. Therefore, we conclude that ligustrazine may inhibit the proliferation and inflammation of PASMCs by regulating the activation of the PI3K/AKT signaling pathway, thereby attenuating MCT-induced PAH in rats. Collectively, these findings suggest that ligustrazine may be a promising therapeutic for PAH.
Collapse
Affiliation(s)
- Huiping Huang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Lingjin Kong
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Shaohua Luan
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Chuanzong Qi
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Fanrong Wu
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| |
Collapse
|
5
|
Wei S, Gao L, Wu C, Qin F, Yuan J. Role of the lysyl oxidase family in organ development (Review). Exp Ther Med 2020; 20:163-172. [PMID: 32536990 PMCID: PMC7282176 DOI: 10.3892/etm.2020.8731] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/02/2020] [Indexed: 02/05/2023] Open
Abstract
Lysyl oxidase proteins (LOXs) are amine oxidases, which are mainly located in smooth muscle cells and fibroblasts and serve an important role in the formation of the extracellular matrix (ECM) in a copper-dependent manner. Owing to the ability of LOX proteins to modulate crosslinking between collagens and to promote the deposition of other fibers, they serve crucially in organogenesis and the subsequent organ development, as well as disease initiation and progression. In addition, ECM formation significantly influences organ morphological formation in both cancer- and non-tumor-related diseases, in addition to cellular epigenetic transformation and migration, under the influence of LOXs. A number of different signaling pathways regulate the LOXs expression and their enzymatic activation. The tissue remodeling and transformation process shares some resemblance between oncogenesis and embryogenesis. Additionally the roles that LOXs serve appeared to be stressed during oncogenesis and tumor metastasis. It has also been indicated LOXs have a noteworthy role in non-tumor diseases. Nonetheless, the role of LOXs in systemic or local organ development and disease control remains unknown. In the present study, the essential roles that LOXs play in embryogenesis were unveiled partially, whereas the role of LOXs in organ or systematic development requires further investigations. The present review aimed to discuss the roles of members of the LOX family in the context of the remodeling of organogenesis and organ development. In addition, the consequences of the malfunction of these proteins related to the development of abnormalities and resulting diseases is discussed.
Collapse
Affiliation(s)
- Shanzun Wei
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liang Gao
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Changjing Wu
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Qin
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiuhong Yuan
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
6
|
Nuche J, Palomino-Doza J, Ynsaurriaga FA, Delgado JF, Ibáñez B, Oliver E, Subías PE. Potential Molecular Pathways Related to Pulmonary Artery Aneurysm Development: Lessons to Learn from the Aorta. Int J Mol Sci 2020; 21:ijms21072509. [PMID: 32260370 PMCID: PMC7177585 DOI: 10.3390/ijms21072509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease caused by pulmonary vascular remodeling. Current vasodilator treatments have substantially improved patients’ survival. This improved survival has led to the appearance of complications related to conditions previously underdiagnosed or even ignored, such as pulmonary artery aneurysm (PAA). The presence of a dilated pulmonary artery has been shown to be related to an increased risk of sudden cardiac death among PAH patients. This increased risk could be associated to the development of left main coronary artery compression or pulmonary artery dissection. Nevertheless, very little is currently known about the molecular mechanisms related to PAA. Thoracic aortic aneurysm (TAA) is a well-known condition with an increased risk of sudden death caused by acute aortic dissection. TAA may be secondary to chronic exposure to classic cardiovascular risk factors. In addition, a number of genetic variants have been shown to be related to a marked risk of TAA and dissection as part of multisystemic syndromes or isolated familial TAA. The molecular pathways implied in the development of TAA have been widely studied and described. Many of these molecular pathways are involved in the pathogenesis of PAH and could be involved in PAA. This review aims to describe all these common pathways to open new research lines that could help lead to a better understanding of the pathophysiology of PAH and PAA and their clinical implications.
Collapse
Affiliation(s)
- Jorge Nuche
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Julián Palomino-Doza
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Fernando Arribas Ynsaurriaga
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Juan F. Delgado
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Borja Ibáñez
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Eduardo Oliver
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Correspondence: (E.O.); (P.E.S.)
| | - Pilar Escribano Subías
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (E.O.); (P.E.S.)
| |
Collapse
|
7
|
Yang L, Liang H, Meng X, Shen L, Guan Z, Hei B, Yu H, Qi S, Wen X. mmu_circ_0000790 Is Involved in Pulmonary Vascular Remodeling in Mice with HPH via MicroRNA-374c-Mediated FOXC1. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:292-307. [PMID: 32199127 PMCID: PMC7082500 DOI: 10.1016/j.omtn.2019.12.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023]
Abstract
Recently, the identification of several circular RNAs (circRNAs) as vital regulators of microRNAs (miRNAs) underlines the increasing complexity of non-coding RNA (ncRNA)-mediated regulatory networks. This study aimed to explore the effects of mmu_circ_0000790 on the biological behaviors of pulmonary artery smooth muscle cells (PASMCs) in hypoxic pulmonary hypertension (HPH). The HPH mouse model and hypoxia-induced PASMC model were initially established, and the expression of mmu_circ_0000790 in the pulmonary vascular tissues and hypoxic PASMCs was determined using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). A series of in vitro experiments such as dual-luciferase, RNA pull-down, and RNA-binding protein immunoprecipitation (RIP) assays were conducted to evaluate the interactions among mmu_circ_0000790, microRNA-374c (miR-374c), and forkhead transcription factor 1 (FOXC1). The potential physiological functions of mmu_circ_0000790, miR-374c, and FOXC1 in hypoxic PASMCs were investigated through gain- and loss-of function approaches. Upregulated mmu_circ_0000790 was found in both the HPH-pulmonary vascular tissues and hypoxic PASMCs. Additionally, mmu_circ_0000790 could competitively bind to miR-374c and consequently upregulate the target gene of miR-374c, FOXC1. It was also observed that mmu_circ_0000790 induced proliferation and inhibited apoptosis of hypoxic PASMCs, which further promoted the pulmonary vascular remodeling in mice with HPH. Therefore, we speculate that mmu_circ_0000790 may serve as a prospective target for the treatment of patients with HPH.
Collapse
Affiliation(s)
- Lei Yang
- ICU, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, P.R. China.
| | - Huan Liang
- ICU, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, P.R. China
| | - Xianguo Meng
- ICU, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, P.R. China
| | - Li Shen
- Glorious Community, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, P.R. China
| | - Zhanjiang Guan
- ICU, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, P.R. China
| | - Bingchang Hei
- ICU, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, P.R. China
| | - Haitao Yu
- ICU, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, P.R. China
| | - Shanshan Qi
- ICU, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, P.R. China
| | - Xianchun Wen
- Institute of Medical Science, Qiqihar Medical College, Qiqihar 161002, P.R. China.
| |
Collapse
|
8
|
Li S, Zhai C, Shi W, Feng W, Xie X, Pan Y, Wang J, Yan X, Chai L, Wang Q, Zhang Q, Liu P, Li M. Leukotriene B 4 induces proliferation of rat pulmonary arterial smooth muscle cells via modulating GSK-3β/β-catenin pathway. Eur J Pharmacol 2019; 867:172823. [PMID: 31770525 DOI: 10.1016/j.ejphar.2019.172823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022]
Abstract
Leukotriene B4 (LTB4) has been found to contribute to pulmonary arterial smooth muscle cells (PASMCs) proliferation and pulmonary arterial remodeling therefore the development of pulmonary arterial hypertension (PAH). Yet, the underlying molecular mechanisms remain poorly understood. The present study aims to address this issue. Our results demonstrate that LTB4 dose- and time-dependently induced proliferation of primary cultured rat PASMCs, this was accompanied with the activation of phosphatidylinositol-3-kinase/Akt (PI3K/Akt) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways, and consequent inactivation of glycogen synthase kinase-3β (GSK-3β), up-regulation of β-catenin and induction of cyclin D1 expression. The presence of PI3K inhibitor (LY294002) or MEK inhibitor (U0126) or prior silencing of β-catenin with siRNA suppressed LTB4-induced cyclin D1 up-regulation and PASMCs proliferation. In addition, inactivation or lack of GSK-3β up-regulated β-catenin and cyclin D1 in PASMCs. Taken together, our study indicates that activation of PI3K/Akt and ERK1/2 pathways mediates LTB4-induced PASMCs proliferation by modulating GSK-3β/β-catenin/cyclin D1 axis and suggests that targeting this pathway might have potential value in alleviating vascular remodeling and benefit PAH.
Collapse
Affiliation(s)
- Shaojun Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Cui Zhai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Wei Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yilin Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Pengtao Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
9
|
Taskan MM, Karatas O, Balci Yuce H, Isiker Kara G, Gevrek F, Ucan Yarkac F. Hypoxia and collagen crosslinking in the healthy and affected sites of periodontitis patients. Acta Odontol Scand 2019; 77:600-607. [PMID: 31174446 DOI: 10.1080/00016357.2019.1624819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Present study suggests that diseased sites of periodontitis with stage 3 grade B and C had decreased fibroblast cell density, hypoxia-inducible factor (HIF) and vascular endothelial growth factor (VEGF) expressions while increased inflammatory cell counts compared to both healthy sites of the periodontitis patients and healthy controls. Collagen maturation enzymes also decreased in the diseased sites. Objective: The present study aimed at determining markers of hypoxia and collagen crosslinking in healthy and diseased gingiva from healthy individuals and periodontitis patients. Methods: Group-1; healthy individuals, Group-2; healthy sites of periodontitis patients-stage 3 grade B, (H-GradeB) Group-3; diseased sites of periodontitis patients-stage 3 grade B, (D-GradeB). Group-4; healthy sites of periodontitis patients-stage 3 grade C, (H-GradeC). Group-5; diseased sites of periodontitis patients-stage 3 grade C, (D-GradeC). Plaque index (PI), gingival index (GI) and clinical attachment levels (CALs) were recorded. Gingival biopsies were obtained. Fibroblast and inflammatory cells were counted. HIF-1α, prolyl hydroxylase (PH), VEGF, lysyl oxidase (LOX) and lysyl hydroxylase (LH) levels were determined via immunohistochemistry. Results: Fibroblast cell counts were lower in D-GradeC and D-GradeB than other groups. C group had highest fibroblast cell counts. Inflammatory cell counts were highest in the D-GradeC and lowest in C group. HIF-1α levels were highest in C group and decreased in diseased sites. Lowest value was observed in D-GradeC group. VEGF, PH, and LH levels were higher in the control group compared to other groups. LOX levels were similar in the groups except for D-GradeC. LOX levels were similar in the groups except for D-GradeC which is significantly lower than those of the control group and healthy sites. Conclusions: The results revealed that diseased sites of periodontitis patients had decreased fibroblast cells, HIF and VEGF expressions while increased inflammatory cells. Collagen crosslinking tend to decrease with disease regardless of stage and grade of disease.
Collapse
Affiliation(s)
- Mehmet Murat Taskan
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Ozkan Karatas
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Hatice Balci Yuce
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Gozde Isiker Kara
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Fikret Gevrek
- Department of Histology and Embryology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Fatma Ucan Yarkac
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
10
|
Zhao M, Chen N, Li X, Lin L, Chen X. MiR-19a modulates hypoxia-mediated cell proliferation and migration via repressing PTEN in human pulmonary arterial smooth muscle. Life Sci 2019; 239:116928. [PMID: 31682848 DOI: 10.1016/j.lfs.2019.116928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022]
Abstract
AIM The dysfunction of human pulmonary arterial smooth muscle cells (HPASMCs) has been suggested to participate in the pathophysiology of pulmonary arterial hypertension (PAH). This study determined miR-19a expression in hypoxia-induced HPASMCs and explored the mechanistic actions of miR-19a in hypoxia-induced HPASMC proliferation and migration. METHODS QRT-PCR and western blot assays respectively determined the mRNA and protein expression of miR-19a, phosphatase and tensin homolog (PTEN) and hypoxia-inducible factor-1 alpha (HIF-1α). In vitro functional assays determined HPASMC proliferation and migration, respectively. Luciferase reporter assay determined interaction between miR-19a and PTEN. The knockdown effects of miR-19a on PAH were confirmed in in vivo mice model. RESULTS Hypoxia treatment time-dependently up-regulated miR-19a expression and enhanced cell proliferation in HPASMCs. MiR-19a overexpression increased cell proliferation and migration of HPASMCs, while repression of miR-19a reduced cell proliferative and migratory potentials of hypoxia-treated HPASMCs. Bioinformatics analysis and luciferase reporter assay showed that PTEN 3' untranslated region was targeted by miR-19a, and miR-19a repressed the mRNA and protein expression of PTEN in HPASMCs. Further rescue studies revealed that miR-19a regulated proliferative and migratory potentials of hypoxia-treated HPASMCs via suppressing PTEN expression. In addition, HIF-1α was identified as one of the mediators for the hypoxia-induced aberrant expression levels of miR-19a and PTEN. MiR-19a overexpression enhanced PI3K/AKT signaling, which was attenuated by enforced expression of PTEN in HPASMCs. More importantly, knockdown of miR-19 attenuated the chronic hypoxia-induced PAH in in vivo mice model. CONCLUSION This study presented a novel mechanistic action of miR-19a-mediated cell proliferation and migration of HPASMCs.
Collapse
Affiliation(s)
- Mei Zhao
- Department of Pharmacy, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, China.
| | - Ni Chen
- Department of Pharmacy, The Second Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, China.
| | - Xuelian Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin City, Heilongjiang Province, China.
| | - Ling Lin
- Department of Cardiovascular Medicine, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, China.
| | - Xin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, China.
| |
Collapse
|
11
|
Is there a role for prostanoid-mediated inhibition of IL-6 trans-signalling in the management of pulmonary arterial hypertension? Biochem Soc Trans 2019; 47:1143-1156. [PMID: 31341036 DOI: 10.1042/bst20190046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/17/2022]
Abstract
Inflammation has been highlighted as a key factor in pulmonary arterial hypertension (PAH) development, particularly interleukin-6 (IL-6). IL-6 activates JAK-STAT signalling to induce transcription of pro-inflammatory and pro-angiogenic genes, enabling PAH progression, as well as the transcription of suppressor of cytokine signalling 3 (SOCS3) which limits IL-6 signalling. Current PAH therapies include prostanoid drugs which induce vasodilation via stimulating intracellular 3',5'-cyclic adenosine monophosphate (cAMP) levels. cAMP can also inhibit IL-6-mediated endothelial dysfunction via the induction of SOCS3. Thus, we propose that an important mechanism by which cAMP-mobilising prostanoid drugs limit PAH is by inhibiting IL-6-mediated pulmonary inflammation and remodelling via SOCS3 inhibition of IL-6 signalling. Further clarification may result in effective strategies with which to target the IL-6/JAK-STAT signalling pathway in PAH.
Collapse
|
12
|
Xia X, Peng Y, Lei D, Chen W. Hypercapnia downregulates hypoxia‐induced lysyl oxidase expression in pulmonary artery smooth muscle cells via inhibiting transforming growth factor β1signalling. Cell Biochem Funct 2019; 37:193-202. [PMID: 30917408 DOI: 10.1002/cbf.3390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/17/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xiao‐dong Xia
- Department of Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Yan‐ping Peng
- Department of Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Dan Lei
- Department of Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Wei‐qian Chen
- Department of Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| |
Collapse
|
13
|
Wang J, Zhu MC, Kalionis B, Wu JZ, Wang LL, Ge HY, Chen CC, Tang XD, Song YL, He H, Xia SJ. Characteristics of circular RNA expression in lung tissues from mice with hypoxia‑induced pulmonary hypertension. Int J Mol Med 2018; 42:1353-1366. [PMID: 29956720 PMCID: PMC6089758 DOI: 10.3892/ijmm.2018.3740] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening lung disease, characterized by an increase in pulmonary arterial pressure caused by vasoconstriction and vascular remodeling. The pathogenesis of PH is not fully understood, and there is a lack of potential biomarkers for the diagnosis and treatment of patients with PH. Non-coding RNAs with a characteristic covalently closed loop structure, termed circular RNAs (circRNAs), are present in a number of pulmonary diseases. To the best of our knowledge, the present study is the first to use microarray analysis to determine the expression profile of circRNAs in lung tissues from mice with hypoxia-induced PH. In total, 23 significantly upregulated and 41 significantly down-regulated circRNAs were identified. Of these, 12 differentially expressed circRNAs were selected for further validation using reverse transcription-quantitative polymerase chain reaction. Putative microRNAs (miRNAs) that bind to the dysregulated circRNAs were predicted. Subsequently, bioinformatics tools were used to construct circRNA-miRNA-mRNA networks for the two most promising circRNAs, namely mmu_circRNA_004592 and mmu_circRNA_018351. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of target genes of the dysregulated circRNAs revealed that these dysregulated circRNAs may serve an important role in the pathogenesis of hypoxia-induced PH. Therefore, these dysregulated circRNAs are candidate diagnostic biomarkers and potential therapeutic targets for PH.
Collapse
Affiliation(s)
- Jian Wang
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Meng-Chan Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, P.R. China
| | - Bill Kalionis
- Pregnancy Research Centre, Department of Maternal‑Fetal Medicine, Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - Jun-Zhen Wu
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Lin-Lin Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, P.R. China
| | - Hai-Yan Ge
- Department of Pulmonary Medicine, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Cui-Cui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, P.R. China
| | - Xiao-Dan Tang
- Department of Pulmonary Medicine, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yuan-Lin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, P.R. China
| | - Hong He
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Shi-Jin Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
14
|
Sharma H, Chinnappan M, Agarwal S, Dalvi P, Gunewardena S, O'Brien-Ladner A, Dhillon NK. Macrophage-derived extracellular vesicles mediate smooth muscle hyperplasia: role of altered miRNA cargo in response to HIV infection and substance abuse. FASEB J 2018; 32:5174-5185. [PMID: 29672222 PMCID: PMC6103174 DOI: 10.1096/fj.201701558r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Our previous studies consistently demonstrate enhanced pulmonary vascular remodeling in HIV–infected intravenous drug users, and in simian immunodeficiency virus–infected macaques or HIV-transgenic rats exposed to opioids or cocaine. Although we reported an associated increase in perivascular inflammation, the exact role of inflammatory cells in the development of pulmonary vascular remodeling remains unknown. In this study, HIV–infected and cocaine (H+C)–treated human monocyte derived macrophages released a higher number of extracellular vesicles (EVs), compared to HIV-infected or uninfected cocaine-treated macrophages, with a significant increase in the particle size range to 100–150 nm. Treatment of primary human pulmonary arterial smooth muscle cells (HPASMCs) with these EVs resulted in a significant increase in smooth muscle proliferation. We also observed a significant increase in the miRNA-130a level in the EVs derived from H+C-treated macrophages that corresponded with the decrease in the expression of phosphatase and tensin homolog and tuberous sclerosis 1 and 2 and activation of PI3K/protein kinase B signaling in HPASMCs on addition of these EVs. Transfection of HPASMCs with antagomir-130a–ameliorated the EV-induced effect. Thus, we conclude that EVs derived from H+C-treated macrophages promote pulmonary smooth muscle proliferation by delivery of its prosurvival miRNA cargo, which may play a crucial role in the development of PAH.—Sharma, H., Chinnappan, M., Agarwal, S., Dalvi, P., Gunewardena, S., O’Brien-Ladner, A., Dhillon, N. K. Macrophage-derived extracellular vesicles mediate smooth muscle hyperplasia: role of altered miRNA cargo in response to HIV infection and substance abuse.
Collapse
Affiliation(s)
- Himanshu Sharma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Mahendran Chinnappan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Pranjali Dalvi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Amy O'Brien-Ladner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|