1
|
Hao Q, Li T, Lu G, Wang S, Li Z, Gu C, Kong F, Shu Q, Li Y. Chlorophyllase (PsCLH1) and light-harvesting chlorophyll a/b binding protein 1 (PsLhcb1) and PsLhcb5 maintain petal greenness in Paeonia suffruticosa 'Lv Mu Yin Yu'. J Adv Res 2024:S2090-1232(24)00388-6. [PMID: 39236974 DOI: 10.1016/j.jare.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024] Open
Abstract
INTRODUCTION Green flowers are not an adaptive trait in natural plants due to the challenge for pollinators to discriminate from leaves, but they are valuable in horticulture. The molecular mechanisms of green petals remain unclear. Tree peony (Paeonia suffruticosa) is a globally cultivated ornamental plant and considered the 'King of Flowers' in China. The P. suffruticosa 'Lv Mu Yin Yu (LMYY)' cultivar with green petals could be utilized as a representative model for understanding petal-specific chlorophyll (Chl) accumulation and color formation. OBJECTIVES Identify the key genes related to Chl metabolism and understand the molecular mechanism of petal color changes. METHODS The petal color parameter was analyzed at five developmental stages using a Chroma Spectrophotometer, and Chl and anthocyanin accumulation patterns were examined. Based on comparative transcriptomes, differentially expressed genes (DEGs) were identified, among which three were functionally characterized through overexpression in tobacco plants or silencing in 'LMYY' petals. RESULTS During flower development and blooming, flower color changed from green to pale pink, consistent with the Chl and anthocyanin levels. The level of Chl demonstrated a similar pattern with petal epidermal cell striation density. The DEGs responsible for Chl and anthocyanin metabolism were characterized through a comparative transcriptome analysis of flower petals over three critical developmental stages. The key chlorophyllase (PsCLH1) and light-harvesting chlorophyll a/b binding protein 1 (PsLhcb1) and PsLhcb5 influenced the Chl accumulation and the greenness of 'LMYY' petals. CONCLUSION PsCLH1, PsLhcb1, and PsLhcb5 were critical in accumulating the Chl and maintaining the petal greenness. Flower color changes from green to pale pink were regulated by the homeostasis of Chl degradation and anthocyanin biosynthesis. This study offers insights into underlying molecular mechanisms in the green petal and a strategy for germplasm innovation.
Collapse
Affiliation(s)
- Qing Hao
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Tongtong Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Gaojie Lu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shuo Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Zhen Li
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Cancan Gu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Fan Kong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qingyan Shu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China.
| |
Collapse
|
2
|
Chen J, Yang S, Fu M, He Y, Zeng H. Abscisic Acid Regulates the Occurrence and Recovery of the Striped Leaf Phenotype in Response to Lacking Light at the Base of Sheath in Rice by Modulating Carbohydrate Metabolism. PLANTS (BASEL, SWITZERLAND) 2024; 13:2090. [PMID: 39124208 PMCID: PMC11314377 DOI: 10.3390/plants13152090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Rice B03S mutants with intermittent leaf discoloration were developed from the photoperiod- and thermosensitive genic male sterile (PTGMS) rice line Efeng 1S. After these plants were deeply transplanted, the new leaves manifested typical stripe patterns. In this study, deep and shallow transplantation of B03S was carried out, and aluminum shading was performed directly on the leaf sheath. It was determined that the reason for the appearance of the striped leaf trait was that the base of leaf sheath lacked light, at which time the sheath transformed from the source organ to the sink organ in rice. To elucidate the related metabolic changes in glycometabolism and abscisic acid (ABA) biosynthesis and transcriptional regulation in the leaf sheath, ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) combined with transcriptome and real-time quantitative PCR (qPCR) validation were used for analysis after deep and shallow transplantation. The result indicates that the leaf sheath may need to compete with the new leaves for sucrose produced by the photosynthesis of old leaves in response to lacking light at the base of sheath. Moreover, the ABA content increases in the leaf sheath when the gene expression of ABA2 and AAO1 is upregulated at the same time, enhancing the plant's resistance to the adverse condition of shading at the leaf sheath. Furthermore, exogenous spraying of B03S with ABA solution was carried out to help recovery under shading stress. The result indicates that the synthesis of endogenous ABA in the leaf sheath is reduced by spraying ABA. At the same time, ABA regulates sucrose metabolism by inhibiting the expression of the SUS gene. This allows for more sucrose synthesized by the old leaves to be transported to the new leaves, resulting an obvious recovery effect of the strip leaf character due to the re-balance of sugar supply and demand in B03S. These findings improve the understanding of the physiological function and metabolic mechanism of the rice leaf sheath, provide a theoretical basis for uneven leaf coloration in nature, and provide theoretical guidance for rice production via seedling transplantation or direct seeding.
Collapse
Affiliation(s)
| | | | | | - Ying He
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.C.); (S.Y.); (M.F.)
| | - Hanlai Zeng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.C.); (S.Y.); (M.F.)
| |
Collapse
|
3
|
Coyago-Cruz E, Moya M, Méndez G, Villacís M, Rojas-Silva P, Corell M, Mapelli-Brahm P, Vicario IM, Meléndez-Martínez AJ. Exploring Plants with Flowers: From Therapeutic Nutritional Benefits to Innovative Sustainable Uses. Foods 2023; 12:4066. [PMID: 38002124 PMCID: PMC10671036 DOI: 10.3390/foods12224066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Flowers have played a significant role in society, focusing on their aesthetic value rather than their food potential. This study's goal was to look into flowering plants for everything from health benefits to other possible applications. This review presents detailed information on 119 species of flowers with agri-food and health relevance. Data were collected on their family, species, common name, commonly used plant part, bioremediation applications, main chemical compounds, medicinal and gastronomic uses, and concentration of bioactive compounds such as carotenoids and phenolic compounds. In this respect, 87% of the floral species studied contain some toxic compounds, sometimes making them inedible, but specific molecules from these species have been used in medicine. Seventy-six percent can be consumed in low doses by infusion. In addition, 97% of the species studied are reported to have medicinal uses (32% immune system), and 63% could be used in the bioremediation of contaminated environments. Significantly, more than 50% of the species were only analysed for total concentrations of carotenoids and phenolic compounds, indicating a significant gap in identifying specific molecules of these bioactive compounds. These potential sources of bioactive compounds could transform the health and nutraceutical industries, offering innovative approaches to combat oxidative stress and promote optimal well-being.
Collapse
Affiliation(s)
- Elena Coyago-Cruz
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170143, Ecuador
| | - Melany Moya
- Facultad de Ciencias Médicas, Carrera de Obstetricia, Universidad Central del Ecuador, Iquique, Luis Sodiro N14-121, Quito 170146, Ecuador
| | - Gabriela Méndez
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170143, Ecuador
| | - Michael Villacís
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170143, Ecuador
| | - Patricio Rojas-Silva
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Mireia Corell
- Departamento de Ciencias Agroforestales, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Carretera de Utrera Km 1, 41013 Sevilla, Spain
- Unidad Asociada al CSIC de Uso Sostenible del Suelo y el Agua en la Agricultura (US-IRNAS), Crta. de Utrera Km 1, 41013 Sevilla, Spain
| | - Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (A.J.M.-M.)
| | - Isabel M. Vicario
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (A.J.M.-M.)
| | - Antonio J. Meléndez-Martínez
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (A.J.M.-M.)
| |
Collapse
|
4
|
Su X, Yue X, Kong M, Xie Z, Yan J, Ma W, Wang Y, Zhao J, Zhang X, Liu M. Leaf Color Classification and Expression Analysis of Photosynthesis-Related Genes in Inbred Lines of Chinese Cabbage Displaying Minor Variations in Dark-Green Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112124. [PMID: 37299103 DOI: 10.3390/plants12112124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
The leaves of the Chinese cabbage which is most widely consumed come in a wide variety of colors. Leaves that are dark green can promote photosynthesis, effectively improving crop yield, and therefore hold important application and cultivation value. In this study, we selected nine inbred lines of Chinese cabbage displaying slight differences in leaf color, and graded the leaf color using the reflectance spectra. We clarified the differences in gene sequences and the protein structure of ferrochelatase 2 (BrFC2) among the nine inbred lines, and used qRT-PCR to analyze the expression differences of photosynthesis-related genes in inbred lines with minor variations in dark-green leaves. We found expression differences among the inbred lines of Chinese cabbage in photosynthesis-related genes involved in the porphyrin and chlorophyll metabolism, as well as in photosynthesis and photosynthesis-antenna protein pathway. Chlorophyll b content was significantly positively correlated with the expression of PsbQ, LHCA1_1 and LHCB6_1, while chlorophyll a content was significantly negatively correlated with the expression PsbQ, LHCA1_1 and LHCA1_2. Our results provide an empirical basis for the precise identification of candidate genes and a better understanding of the molecular mechanisms responsible for the production of dark-green leaves in Chinese cabbage.
Collapse
Affiliation(s)
- Xiangjie Su
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xiaonan Yue
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Mingyu Kong
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Ziwei Xie
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Jinghui Yan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xiaomeng Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Mengyang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
5
|
Zhang X, Zhao Z, Zhang M, Wang J, Cheng T, Zhang Q, Pan H. FsHemF is involved in the formation of yellow Forsythia leaves by regulating chlorophyll synthesis in response to light intensity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107746. [PMID: 37210861 DOI: 10.1016/j.plaphy.2023.107746] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
The leaves of Forsythia koreana 'Suwon Gold' are yellow under natural light condition and can revert to green when the light intensity is reduced. To understand the molecular mechanism of leaf color changes in response to light intensity, we compared the chlorophyll content and precursor content between yellow- and green-leaf Forsythia under shade and light-recovery conditions. We identified the conversion of coproporphyrin III (Coprogen III) to protoporphyrin IX (Proto IX) as the primary rate-limiting step of chlorophyll biosynthesis in yellow-leaf Forsythia. Further analysis of the activity of the enzymes that catalyze this step and the expression pattern of the chlorophyll biosynthesis-related genes under different light intensities revealed that the negatively regulated expression of FsHemF by light intensity was the major cause affecting the leaf color change in response to light intensity in yellow-leaf Forsythia. To further understand the cause of differential expression pattern of FsHemF in yellow- and green-leaf lines, we compared the coding sequence and promoter sequence of FsHemF between yellow- and green-leaf Forsythia. We found that one G-box light-responsive cis-element was absent in the promoter region of green-leaf lines. To investigate the functional role of FsHemF, we performed virus-induced gene silencing (VIGS) of FsHemF in green-leaf Forsythia, which leads to yellowing leaf veins, decreased chlorophyll b content, and inhibition of chlorophyll biosynthesis. The results will assist in elucidating the mechanism of yellow-leaf Forsythia in response to light intensity.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Zhengtian Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
6
|
Li S, Wang S, Song Z, Wang P, Lv F, Yang R, Li Y. The oxidative damage of the Lagerstroemia indica chlorosis mutant gl1 involves in ferroptosis. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153886. [PMID: 36493670 DOI: 10.1016/j.jplph.2022.153886] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Photooxidation is the major physiological performance of the Lagerstroemia indica chlorosis mutant gl1 under field conditions. The mechanisms of the progressive symptoms of oxidative damage from the lower older leaves to the upper mature leaves are complicated and still unclear. The aim of this work was to investigate the physiological mechanisms of oxidative stress from the perspective of the photosynthetic metabolites. The phytosynthetic metabolites of gl1 mutant changed significantly compared to wild type (WT) L. indica, such as by increasing phenolics, decreasing soluble sugar, protein and ascorbate, and redistributing antioxidant enzyme activities. The co-accumulation of phenolics and guaiacol-POD in gl1 mutant promote the removal of H2O2, as well the increase of phenoxyl radicals levels. Furthermore, the ion balance was significantly disturbed and Fe accumulated the most among these fluctuating nutrients in the leaves of gl1 mutant. The accumulated Fe was found neither in the chloroplasts nor in the cell wall of the leaves and became unshielded Fe, which favors the Fenton/Haber-Weiss reaction and stabilizes the phenoxyl radicals in metal complexation. The results suggested that the increase of phenolics and Fe accumulation were obviously involved in oxidative damage of gl1 mutant.
Collapse
Affiliation(s)
- Sumei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu Province, PR China
| | - Shuan Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu Province, PR China
| | - Zhenxing Song
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu Province, PR China
| | - Peng Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu Province, PR China
| | - Fenni Lv
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu Province, PR China
| | - Rutong Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu Province, PR China
| | - Ya Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu Province, PR China.
| |
Collapse
|
7
|
Shen Y, Chen M, Hong J, Xiong W, Xiong H, Wu X, Hu L, Xiao Y. Identification and characterization of tsyl1, a thermosensitive chlorophyll-deficient mutant in rice (Oryza sativa). JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153782. [PMID: 35963041 DOI: 10.1016/j.jplph.2022.153782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast development and chlorophyll biosynthesis are affected by temperature. However, the underlying molecular mechanism of this phenomenon remains elusive. Here, we isolated and characterized a thermosensitive yellow-green leaf mutant named tsyl1 (thermosensitive yellow leaf 1) from an ethylmethylsulfone (EMS)-mutagenized pool of rice. The mutant exhibits a yellow-green leaf phenotype and decreased leaf chlorophyll contents throughout development. At the mature stage of the tsyl1 mutant, the plant height, tiller number, number of spikelets per panicle and 1000 seed weight were decreased significantly compared to those of wild-type plants, but the seed setting rate and panicle length were not. The mutant phenotype was controlled by a single recessive nuclear gene on the short arm of rice chromosome 11. Map-based cloning of TSYL1, followed by a complementation experiment, showed a G base deletion at the coding region of LOC_Os11g05552, leading to the yellow-green phenotype. The TSYL1 gene encodes a signal recognition particle 54 kDa (SRP54) protein that is conserved in all organisms. The expression of tsyl1 was induced by high temperature. Furthermore, the expression of chlorophyll biosynthesis- and chloroplast development-related genes was influenced in tsyl1 at different temperatures. These results indicated that the TSYL1 gene plays a key role in chlorophyll biosynthesis and is affected by temperature at the transcriptional level.
Collapse
Affiliation(s)
- Yumin Shen
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China; Nanchang Branch of Chinese National Center for Rice Improvement, Nanchang, Jiangxi, 330200, China; National Engineering Research Center of Rice, Nanchang, Jiangxi, 330200, China.
| | - Mingliang Chen
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| | - Jun Hong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wentao Xiong
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| | - Huanjin Xiong
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| | - Xiaoyan Wu
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| | - Lanxiang Hu
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| | - Yeqing Xiao
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China.
| |
Collapse
|
8
|
Yu C, Ke Y, Qin J, Huang Y, Zhao Y, Liu Y, Wei H, Liu G, Lian B, Chen Y, Zhong F, Zhang J. Genome-wide identification of calcineurin B-like protein-interacting protein kinase gene family reveals members participating in abiotic stress in the ornamental woody plant Lagerstroemia indica. FRONTIERS IN PLANT SCIENCE 2022; 13:942217. [PMID: 36204074 PMCID: PMC9530917 DOI: 10.3389/fpls.2022.942217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Calcineurin B-like protein-interacting protein kinases (CIPKs) play important roles in plant responses to stress. However, their function in the ornamental woody plant Lagerstroemia indica is remains unclear. In this study, the LiCIPK gene family was analyzed at the whole genome level. A total of 37 LiCIPKs, distributed across 17 chromosomes, were identified. Conserved motif analysis indicated that all LiCIPKs possess a protein kinase motif (S_TKc) and C-terminal regulatory motif (NAF), while seven LiCIPKs lack a protein phosphatase interaction (PPI) motif. 3D structure analysis further revealed that the N-terminal and C-terminal 3D-structure of 27 members are situated near to each other, while 4 members have a looser structure, and 6 members lack intact structures. The intra- and interspecies collinearity analysis, synonymous substitution rate (K s ) peaks of duplicated LiCIPKs, revealed that ∼80% of LiCIPKs were retained by the two whole genome duplication (WGD) events that occurred approximately 56.12-61.16 million year ago (MYA) and 16.24-26.34 MYA ago. The promoter of each LiCIPK contains a number of auxin, abscisic acid, gibberellic acid, salicylic acid, and drought, anaerobic, defense, stress, and wound responsive cis-elements. Of the 21 members that were successfully amplified by qPCR, 18 LiCIPKs exhibited different expression patterns under NaCl, mannitol, PEG8000, and ABA treatments. Given that LiCIPK30, the AtSOS2 ortholog, responded to all four types of stress it was selected for functional verification. LiCIPK30 complements the atsos2 phenotype in vivo. 35S:LiCIPK-overexpressing lines exhibit increased leaf area increment, chlorophyll a and b content, reactive oxygen species scavenging enzyme activity, and expression of ABF3 and RD22, while the degree of membrane lipid oxidation decreases under NaCl treatment compared to WT. The evolutionary history, and potential mechanism by which LiCIPK30 may regulate plant tolerance to salt stress were also discussed. In summary, we identified LiCIPK members involved in abiotic stress and found that LiCIPK30 transgenic Arabidopsis exhibits more salt and osmotic stress tolerance than WT. This research provides a theoretical foundation for further investigation into the function of LiCIPKs, and for mining gene resources to facilitate the cultivation and breeding of new L. indica varieties in coastal saline-alkali soil.
Collapse
Affiliation(s)
- Chunmei Yu
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Yongchao Ke
- School of Life Sciences, Nantong University, Nantong, China
| | - Jin Qin
- School of Life Sciences, Nantong University, Nantong, China
| | - Yunpeng Huang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yanchun Zhao
- School of Life Sciences, Nantong University, Nantong, China
| | - Yu Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Hui Wei
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Guoyuan Liu
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Bolin Lian
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Fei Zhong
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| |
Collapse
|
9
|
Effect of Biosynthesized Silver Nanoparticles on Bacterial Biofilm Changes in S. aureus and E. coli. NANOMATERIALS 2022; 12:nano12132183. [PMID: 35808019 PMCID: PMC9268453 DOI: 10.3390/nano12132183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
One approach for solving the problem of antibiotic resistance and bacterial persistence in biofilms is treatment with metals, including silver in the form of silver nanoparticles (AgNPs). Green synthesis is an environmentally friendly method to synthesize nanoparticles with a broad spectrum of unique properties that depend on the plant extracts used. AgNPs with antibacterial and antibiofilm effects were obtained using green synthesis from plant extracts of Lagerstroemia indica (AgNPs_LI), Alstonia scholaris (AgNPs_AS), and Aglaonema multifolium (AgNPs_AM). Nanoparticles were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) analysis. The ability to quench free radicals and total phenolic content in solution were also evaluated. The antibacterial activity of AgNPs was studied by growth curves as well as using a diffusion test on agar medium plates to determine minimal inhibitory concentrations (MICs). The effect of AgNPs on bacterial biofilms was evaluated by crystal violet (CV) staining. Average minimum inhibitory concentrations of AgNPs_LI, AgNPs_AS, AgNPs_AM were 15 ± 5, 20 + 5, 20 + 5 μg/mL and 20 ± 5, 15 + 5, 15 + 5 μg/mL against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, respectively. The E. coli strain formed biofilms in the presence of AgNPs, a less dense biofilm than the S. aureus strain. The highest inhibitory and destructive effect on biofilms was exhibited by AgNPs prepared using an extract from L. indica.
Collapse
|
10
|
Li W, Li H, Shi L, Shen P, Li Y. Leaf color formation mechanisms in Alternanthera bettzickiana elucidated by metabolite and transcriptome analyses. PLANTA 2022; 255:59. [PMID: 35128619 DOI: 10.1007/s00425-022-03840-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The difference in leaf color among the three cultivars of A. bettzickiana is due to different chloroplast morphology and chlorophyll-to-anthocyanin ratios. Alternanthera bettzickiana is one of the most important ornamental plants in modern flower beds because of its colorful leaves. The present study examined the mechanism of leaf color formation in A. bettzickiana. Three cultivars of A. bettzickiana (red, green, and mixed red and green) were selected for comprehensive analyses of leaf color formation by examining cellular and subcellular structures and pigment biosynthesis and metabolism. The difference in leaf colors between the three cultivars of A. bettzickiana was due to different chlorophyll-to-anthocyanin ratios. A. bettzickiana 'Green' showed very low expression of CHS, F3H, and DFR, the key genes of the anthocyanin biosynthesis pathway, and a low anthocyanin content but had mature chloroplasts and a green color. A. bettzickiana 'Red' exhibited a low chlorophyll content and deformed chloroplasts but a high cyanidin content and, thus, a red color. A. bettzickiana 'Variegated' presented high anthocyanin and chlorophyll contents and exhibited red and green variegation, indicating a balance between coloration and photosynthetic efficiency. These data provide a good explanation for the coloration of different cultivars of A. bettzickiana and an important reference for better explaining the color formation mechanisms of plant leaves.
Collapse
Affiliation(s)
- Wenji Li
- College of Landscape Architecture, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Huigen Li
- College of Life Science, Inner Mongolia University for the Nationalities, No.536 Huolinhe Street West, Tongliao City, 028000, Inner Mongolia, China
| | - Lisha Shi
- College of Landscape Architecture, Sichuan Agricultural University, No.211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Ping Shen
- College of Landscape Architecture, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Yurong Li
- College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400716, China.
| |
Collapse
|
11
|
Shen J, Li X, Zhu X, Ding Z, Huang X, Chen X, Jin S. Molecular and Photosynthetic Performance in the Yellow Leaf Mutant of Torreya grandis According to Transcriptome Sequencing, Chlorophyll a Fluorescence, and Modulated 820 nm Reflection. Cells 2022; 11:cells11030431. [PMID: 35159241 PMCID: PMC8834079 DOI: 10.3390/cells11030431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/16/2022] [Accepted: 01/23/2022] [Indexed: 02/01/2023] Open
Abstract
To study the photosynthetic energy mechanism and electron transfer in yellow leaves, transcriptomics combined with physiological approaches was used to explore the mechanism of the yellow leaf mutant Torreya grandis ‘Merrillii’. The results showed that chlorophyll content, the maximal photochemical efficiency of PSII (Fv/Fm), and the parameters related to the OJ phase of fluorescence (φEo, φRo) were all decreased significantly in mutant-type T. grandis leaves. The efficiency needed for an electron to be transferred from the reduced carriers between the two photosystems to the end acceptors of the PSI (δRo) and the quantum yield of the energy dissipation (φDo) were higher in the leaves of mutant-type T. grandis compared to those in wild-type leaves. Analysis of the prompt fluorescence kinetics and modulated 820 nm reflection showed that the electron transfer of PSII was decreased, and PSI activity was increased in yellow T. grandis leaves. Transcriptome data showed that the unigenes involved in chlorophyll synthesis and the photosynthetic electron transport complex were downregulated in the leaves of mutant-type T. grandis compared to wild-type leaves, while there were no observable changes in carotenoid content and biosynthesis. These findings suggest that the downregulation of genes involved in chlorophyll synthesis leads to decreased chlorophyll content, resulting in both PSI activity and carotenoids having higher tolerance when acting as photo-protective mechanisms for coping with chlorophyll deficit and decrease in linear electron transport in PSII.
Collapse
Affiliation(s)
- Jianshuang Shen
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (J.S.); (X.L.); (X.Z.); (Z.D.); (X.H.); (X.C.)
| | - Xueqin Li
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (J.S.); (X.L.); (X.Z.); (Z.D.); (X.H.); (X.C.)
| | - Xiangtao Zhu
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (J.S.); (X.L.); (X.Z.); (Z.D.); (X.H.); (X.C.)
| | - Zhicheng Ding
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (J.S.); (X.L.); (X.Z.); (Z.D.); (X.H.); (X.C.)
| | - Xiaoling Huang
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (J.S.); (X.L.); (X.Z.); (Z.D.); (X.H.); (X.C.)
| | - Xia Chen
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (J.S.); (X.L.); (X.Z.); (Z.D.); (X.H.); (X.C.)
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (J.S.); (X.L.); (X.Z.); (Z.D.); (X.H.); (X.C.)
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- Correspondence:
| |
Collapse
|
12
|
Li S, Wang S, Wang P, Gao L, Yang R, Li Y. Label-free comparative proteomic and physiological analysis provides insight into leaf color variation of the golden-yellow leaf mutant of Lagerstroemia indica. J Proteomics 2020; 228:103942. [PMID: 32805451 DOI: 10.1016/j.jprot.2020.103942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022]
Abstract
GL1 is a golden-yellow leaf mutant that cultivated from natural bud-mutation of Lagerstroemia indica and has a very low level of photosynthetic pigment under sunlight. GL1 can gradually increase its pigment content and turn into pale-green leaf when shading under sunshade net (referred as Re-GL1). The mechanisms that cause leaf color variation are complicated and are not still unclear. Here, we have used a label-free comparative proteomics to investigate differences in proteins abundance and analyze the specific biological process associated with mechanisms of leaf color variation in GL1. A total of 245 and 160 proteins with different abundance were identified in GL1 vs WT and GL1 vs Re-GL1, respectively. Functional classification analysis revealed that the proteins with different abundance mainly related to photosynthesis, heat shock proteins, ribosome proteins, and oxidation-reduction. The proteins that the most significantly contributed to leaf color variation were photosynthetic proteins of PSII and PSI, which directly related to photooxidation and determined the photosynthetic performance of photosystem. Further analysis demonstrated that low jasmonic acid content was needed to golden-yellow leaf GL1. These findings lay a solid foundation for future studies into the molecular mechanisms that underlie leaf color formation of GL1. BIOLOGICAL SIGNIFICANCE: The natural bud mutant GL1 of L. indica is an example through changing leaf color to cope with complex environment. However, the molecular mechanism of leaf color variation are largely elusive. The proteins with different abundance identified from a label-free comparative proteomics revealed a range of biological processes associated with leaf color variation, including photosynthesis, oxidation-reduction and jasmonic acid signaling. The photooxidation and low level of jasmonic acid played a primary role in GL1 adaptation in golden-yellow leaf. These findings provide possible pathway or signal for the molecular mechanism associated with leaf color formation and as a valuable resource for signal transaction of chloroplast.
Collapse
Affiliation(s)
- Sumei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Shuan Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Peng Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Lulu Gao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Rutong Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Ya Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China.
| |
Collapse
|
13
|
Abstract
Color mutation is a common, easily identifiable phenomenon in higher plants. Color mutations usually affect the photosynthetic efficiency of plants, resulting in poor growth and economic losses. Therefore, leaf color mutants have been unwittingly eliminated in recent years. Recently, however, with the development of society, the application of leaf color mutants has become increasingly widespread. Leaf color mutants are ideal materials for studying pigment metabolism, chloroplast development and differentiation, photosynthesis and other pathways that could also provide important information for improving varietal selection. In this review, we summarize the research on leaf color mutants, such as the functions and mechanisms of leaf color mutant-related genes, which affect chlorophyll synthesis, chlorophyll degradation, chloroplast development and anthocyanin metabolism. We also summarize two common methods for mapping and cloning related leaf color mutation genes using Map-based cloning and RNA-seq, and we discuss the existing problems and propose future research directions for leaf color mutants, which provide a reference for the study and application of leaf color mutants in the future.
Collapse
|
14
|
The identification of key candidate genes mediating yellow seedling lethality in a Lilium regale mutant. Mol Biol Rep 2020; 47:2487-2499. [PMID: 32124168 DOI: 10.1007/s11033-020-05323-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
Abstract
Leaf color mutants are ideal materials for exploring plant photosynthesis mechanisms, chlorophyll biosynthetic pathways and chloroplast development. The yellow seedling lethal mutant lrysl1 was discovered from self-bred progenies of Lilium regale; however, the mechanism of leaf color mutation remains unclear. In this study, the ultrastructural and physiological features and de novo RNA-Seq data of a L. regale leaf color mutant and wild-type L. regale were investigated. Genetic analysis indicated that the characteristics of the lrysl1 mutant were controlled by a recessive nuclear gene. The chlorophyll a, chlorophyll b and carotenoid contents in the mutant leaves were lower than those in the wild-type leaves. Furthermore, the contents of the chlorophyll precursors aminolevulinic acid (ALA), porphobilinogen (PBG), protoporphyrin IX (ProtoIX), Mg-protoporphyrin IX (Mg-ProtoIX), and protochlorophyll (Pchl) decreased significantly in mutant leaves. Transcriptome data from the mutant and wild type showed that a total of 892 differentially expressed genes were obtained, of which 668 and 224 were upregulated genes and downregulated genes in the mutant, respectively. Almost all genes in the photosynthesis pathway and chlorophyll biosynthetic pathway were downregulated in the mutant, which corroborated the differences in the physiological features mentioned above. Further research indicated that the chloroplasts of the mutant leaves exhibited an abnormal morphology and distribution and that the expression of a gene related to chloroplast development was downregulated. It was concluded that abnormal chloroplast development was the main cause of leaf color mutation in the mutant lrysl1 and that LrGLK was a gene related to chloroplast development in L. regale. This research provides a foundation for further research on the mechanism by which LrGLK regulates chloroplast development in L. regale.
Collapse
|
15
|
Li X, Huang S, Liu Z, Hou L, Feng H. Mutation in EMB1923 gene promoter is associated with chlorophyll deficiency in Chinese cabbage (Brassica campestris ssp. pekinensis). PHYSIOLOGIA PLANTARUM 2019; 166:909-920. [PMID: 31058333 DOI: 10.1111/ppl.12979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/07/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Leaf color mutants are widespread in higher plants and can be used as markers in crop breeding or as important material in understanding the regulatory mechanisms of chlorophyll biosynthesis and chloroplast development. A stably inherited plant etiolated mutation (pem) was obtained from its wild-type 'FT' (a doubled haploid line of the Chinese cabbage variety 'Fukuda 50') by combining 60 Co-γ radiation and isolated microspore culture in Chinese cabbage. Compared to the wild-type 'FT', the chlorophyll content in the pem mutant was decreased, the photosynthetic capacity was reduced and the chloroplast development was retarded. These physiological changes may lead to a reduction in growth and yield in the pem mutant line. Genetic analysis showed that the mutant phenotype was controlled by the single recessive nuclear pem gene. The pem gene was mapped to a 25.88 kb region on the A03 chromosome. Cloning and sequencing results showed that there was only one DNA sequence variation in this region, which was a 30 bp deletion on the promoter of Bra024218. Its homologous gene encodes EMBRYO DEFECTIVE 1923 (EMB1923) in Arabidopsis thaliana. We therefore predicted that Bra024218 was the mutated gene associated with etiolated leaves in Chinese cabbage. The pem mutant is a useful line for researching chloroplast development and the mechanism of leaf color mutation in Chinese cabbage.
Collapse
Affiliation(s)
- Xiang Li
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Li Hou
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|