1
|
Guo Y, Guan Y, Zhu H, Sun T, Wang Y, Huang Y, Ma C, Emery R, Guan W, Wang C, Liu C. Therapeutic function of iPSCs-derived primitive neuroepithelial cells in a rat model of Parkinson's disease. Neurochem Int 2022; 155:105324. [PMID: 35247479 DOI: 10.1016/j.neuint.2022.105324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 11/16/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are a promising unlimited source for cell replacement therapy of neurodegenerative disorders, including Parkinson's disease (PD). In the present study, rat iPSCs-derived primitive neuroepithelial cells (RiPSCs-iNECs) were successfully induced from rat iPSCs (RiPSCs) following two major developmental stages, and could generate neurospheres and differentiated into both neurons and astrocytes in vitro. Then, the RiPSCs-iNECs-GFP+ were unilaterally transplanted into the right substantia nigra (SN) of 6-hydroxydopamine-lesioned rat models of PD. The results demonstrated that the grafted RiPSCs-iNECs could survive in parkinsonian rat brain for at least 150 days, and many of them differentiated into tyrosine hydroxylase (TH)-positive cells. Furthermore, the PD model rats grafted with RiPSCs-iNECs exhibited a significant functional recovery from their parkinsonian behavioral defects. Histological studies showed that RiPSCs-iNECs could differentiate into multiple types of neurons including dopaminergic neurons, GFAP, Pax6, FoxA2 and DAT-positive cells, and induced dopaminergic neurons extended dense neurites into the host striatum. Thus, iPSCs derived primitive neuroepithelial cells could be an attractive candidate as a source of donor material for the treatment of PD, but the molecular mechanism needs further clarification.
Collapse
Affiliation(s)
- Yu Guo
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yuhan Guan
- University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Huan Zhu
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Tingting Sun
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yuanyuan Wang
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yuqi Huang
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Caiyun Ma
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China; Institute of Beijing Animal Science and Veterinary, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Rik Emery
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Weijun Guan
- Institute of Beijing Animal Science and Veterinary, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Chunjing Wang
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| | - Changqing Liu
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China; Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
2
|
Guo Y, Zhu H, Li X, Ma C, Li Y, Sun T, Wang Y, Wang C, Guan W, Liu C. RepSox effectively promotes the induced differentiation of sheep fibroblasts into adipocytes via the inhibition of the TGF‑β1/Smad pathway. Int J Mol Med 2021; 48:148. [PMID: 34132357 PMCID: PMC8208630 DOI: 10.3892/ijmm.2021.4981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/10/2021] [Indexed: 01/22/2023] Open
Abstract
Previous reports have demonstrated that RepSox can function as a replacement for cMyc and Sox2 in the reprogramming of cells into induced pluripotent stem cells (iPSCs), as well as increasing the levels of bone morphogenetic protein (BMP)-3 and inducing the phosphorylation of Smad1 in mouse embryonic stem cells. In the present study, it was demonstrated that RepSox caused the visible morphological transformation of sheep fibroblasts; however, no significant alterations in cell proliferation, apoptosis or chromosome aberrations were observed. Moreover, RepSox increased the plasticity of long-term cryopreserved sheep fibroblasts, and further promoted differentiation into adipocytes. RepSox treatment led to a notable decrease in the expression of components of the transforming growth factor (TGF)-β signaling pathway, particularly Smad2/3 phosphorylation. RepSox also activated the BMP pathway, promoted the reprogramming of cells from fibroblasts into adipocytes and induced mesenchymal-epithelial transition. It is worth noting that RepSox notably increased the expression of octamer-binding transcription factor 4 and L-Myc, whereas Sox2 and Nanog expression were not detected. The results of high-throughput RNA sequencing revealed that the levels of differentially expressed genes (DEGs) involved in various metabolic processes were markedly upregulated in the RepSox-treated fibroblasts, while the DEGs in the majority of signaling pathways were markedly downregulated. On the whole, the present study demonstrates that RepSox can promote the plasticity of sheep fibroblasts and facilitates the differentiation of adipocytes via increasing BMP expression and inhibiting the activation of the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Yu Guo
- Department of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Huan Zhu
- Department of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Xiangchen Li
- Institute of Beijing Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Caiyun Ma
- Department of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Yanan Li
- Institute of Beijing Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Tingting Sun
- Department of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Yuanyuan Wang
- Department of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Chunjing Wang
- Department of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Weijun Guan
- Institute of Beijing Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Changqing Liu
- Department of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| |
Collapse
|
3
|
Multiple functions of reversine on the biological characteristics of sheep fibroblasts. Sci Rep 2021; 11:12365. [PMID: 34117304 PMCID: PMC8196188 DOI: 10.1038/s41598-021-91468-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 05/26/2021] [Indexed: 11/08/2022] Open
Abstract
Previous reports have demonstrated that Reversine can reverse differentiation of lineage-committed cells to mesenchymal stem cells and suppress tumors growth. However, the molecular mechanisms of antitumor activity and promoting cellular dedifferentiation for reversine have not yet been clearly elucidated. In the present study, it was demonstrated that reversine of 5 μM could induce multinucleated cells through cytokinesis failure rather than just arrested in G2 or M phase. Moreover, reversine reversed the differentiation of sheep fibroblasts into MSC-like style, and notably increased the expression of pluripotent marker genes Oct4 and MSCs-related surface antigens. The fibroblasts treated with reversine could transdifferentiate into all three germ layers cells in vitro. Most importantly, the induced β-like cells and hepatocytes had similar metabolic functions with normal cells in vivo. In addition, reversine promoted fibroblasts autophagy, ROS accumulation, mitochondrial dysfunction and cell apoptosis via the mitochondria mediated intrinsic pathway. The results of high-throughput RNA sequencing showed that most differentially expressed genes (DEGs) involved in Mismatch repair, Nucleotide excision repair and Base excision repair were significantly up-regulated in reversine treated fibroblasts, which means that high concentration of reversine will cause DNA damage and activate the DNA repair mechanism. In summary, reversine can increase the plasticity of sheep fibroblasts and suppress cell growth via the mitochondria mediated intrinsic pathway.
Collapse
|