1
|
Du P, Chen Y, Li Q, Gai Z, Bai H, Zhang L, Liu Y, Cao Y, Zhai Y, Jin W. CancerMHL: the database of integrating key DNA methylation, histone modifications and lncRNAs in cancer. Database (Oxford) 2024; 2024:baae029. [PMID: 38613826 PMCID: PMC11015892 DOI: 10.1093/database/baae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/15/2024]
Abstract
The discovery of key epigenetic modifications in cancer is of great significance for the study of disease biomarkers. Through the mining of epigenetic modification data relevant to cancer, some researches on epigenetic modifications are accumulating. In order to make it easier to integrate the effects of key epigenetic modifications on the related cancers, we established CancerMHL (http://www.positionprediction.cn/), which provide key DNA methylation, histone modifications and lncRNAs as well as the effect of these key epigenetic modifications on gene expression in several cancers. To facilitate data retrieval, CancerMHL offers flexible query options and filters, allowing users to access specific key epigenetic modifications according to their own needs. In addition, based on the epigenetic modification data, three online prediction tools had been offered in CancerMHL for users. CancerMHL will be a useful resource platform for further exploring novel and potential biomarkers and therapeutic targets in cancer. Database URL: http://www.positionprediction.cn/.
Collapse
Affiliation(s)
- Pengyu Du
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Yingli Chen
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Qianzhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Zhimin Gai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Hui Bai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Luqiang Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Yuxian Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Yanni Cao
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Yuanyuan Zhai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Wen Jin
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| |
Collapse
|
2
|
Hong J, Rhee JK. Genomic Effect of DNA Methylation on Gene Expression in Colorectal Cancer. BIOLOGY 2022; 11:1388. [PMID: 36290295 PMCID: PMC9598958 DOI: 10.3390/biology11101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
The aberrant expression of cancer-related genes can lead to colorectal cancer (CRC) carcinogenesis, and DNA methylation is one of the causes of abnormal expression. Although many studies have been conducted to reveal how DNA methylation affects transcription regulation, the ways in which it modulates gene expression and the regions that significantly affect DNA methylation-mediated gene regulation remain unclear. In this study, we investigated how DNA methylation in specific genomic areas can influence gene expression. Several regression models were constructed for gene expression prediction based on DNA methylation. Among these models, ElasticNet, which had the best performance, was chosen for further analysis. DNA methylation near transcription start sites (TSS), especially from 2 kb upstream to 7 kb downstream of TSS, had an essential regulatory role in gene expression. Moreover, methylation-affected and survival-associated genes were compiled and found to be mainly enriched in immune-related pathways. This study investigated genomic regions in which methylation changes can affect gene expression. In addition, this study proposed that aberrantly expressed genes due to DNA methylation can lead to CRC pathogenesis by the immune system.
Collapse
Affiliation(s)
| | - Je-Keun Rhee
- Department of Bioinformatics & Life Science, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
3
|
Bai H, Li QZ, Qi YC, Zhai YY, Jin W. The prediction of tumor and normal tissues based on the DNA methylation values of ten key sites. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194841. [PMID: 35798200 DOI: 10.1016/j.bbagrm.2022.194841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/28/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Abnormal DNA methylation can alter the gene expression to promote or inhibit tumorigenesis in colon adenocarcinoma (COAD). However, the finding important genes and key sites of abnormal DNA methylation which result in the occurrence of COAD is still an eventful task. Here, we studied the effects of DNA methylation in the 12 types of genomic features on the changes of gene expression in COAD, the 10 important COAD-related genes and the key abnormal DNA methylation sites were identified. The effects of important genes on the prognosis were verified by survival analysis. Moreover, it was shown that the important genes were participated in cancer pathways and were hub genes in a co-expression network. Based on the DNA methylation levels in the ten sites, the least diversity increment algorithm for predicting tumor tissues and normal tissues in seventeen cancer types are proposed. The better results are obtained in jackknife test. For example, the predictive accuracies are 94.17 %, 91.28 %, 89.04 % and 88.89 %, respectively, for COAD, rectum adenocarcinoma, pancreatic adenocarcinoma and cholangiocarcinoma. Finally, by computing enrichment score of infiltrating immunocytes and the activity of immune pathways, we found that the genes are highly correlated with immune microenvironment.
Collapse
Affiliation(s)
- Hui Bai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China.
| | - Ye-Chen Qi
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Yuan-Yuan Zhai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Wen Jin
- Inner Mongolia key laboratory of gene regulation of the metabolic disease, Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot 010010, China
| |
Collapse
|
4
|
Carbajo-García MC, Corachán A, Juárez-Barber E, Monleón J, Payá V, Trelis A, Quiñonero A, Pellicer A, Ferrero H. Integrative analysis of the DNA methylome and transcriptome in uterine leiomyoma shows altered regulation of genes involved in metabolism, proliferation, extracellular matrix and vesicles. J Pathol 2022; 257:663-673. [PMID: 35472162 DOI: 10.1002/path.5920] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
Abstract
Uterine leiomyomas are the most common benign tumors in women of reproductive age. Despite the high prevalence, tumor pathology remains unclear, which hampers development of safe and effective treatments. Epigenetic mechanisms appear to be involved in uterine leiomyoma development, particularly via DNA methylation that regulates gene expression. We aimed to determine the relationship between DNA methylation and gene expression in uterine leiomyoma compared to adjacent myometrium to identify molecular mechanisms involved in uterine leiomyoma formation that are under epigenetic control. Our results showed a different DNA methylation profile between uterine leiomyoma and myometrium, leading to hypermethylation of uterine leiomyoma, and a different global transcriptome profile. Integration of DNA methylation and whole-transcriptome RNA-sequencing data identified 93 genes regulated by methylation, with 22 hypomethylated/upregulated and 71 hypermethylated/downregulated. Functional enrichment analysis showed dysregulated biological processes and molecular functions involved in metabolism and cell physiology, response to extracellular signals, invasion, and proliferation, as well as pathways related to uterine biology and cancer. Cellular components such as cell membranes, vesicles, extracellular matrix, and cell junctions were dysregulated in uterine leiomyoma. In addition, we found hypomethylation/upregulation of oncogenes (PRL, ATP8B4, CEMIP, ZPMS2-AS1, RIMS2, TFAP2C) and hypermethylation/downregulation of tumor suppressor genes (EFEMP1, FBLN2, ARHGAP10, HTATIP2), which are related to proliferation, invasion, altered metabolism, deposition of extracellular matrix, and Wnt/β-catenin pathway dysregulation. This confirms that key processes of uterine leiomyoma development are under DNA methylation control. Finally, inhibition of DNA methyltransferases by 5-aza-2'-deoxycitidine increased expression of hypermethylated/downregulated genes in uterine leiomyoma cells in vitro. In conclusion, gene regulation by DNA methylation is implicated in uterine leiomyoma pathogenesis, and reversion of this methylation could offer a therapeutic option for uterine leiomyoma. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- María Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Spain
| | - Ana Corachán
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Spain
| | | | - Javier Monleón
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Vicente Payá
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Alicia Quiñonero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,IVIRMA, Rome, Rome, Italy
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
5
|
Cao YN, Li QZ, Liu YX. Discovered Key CpG Sites by Analyzing DNA Methylation and Gene Expression in Breast Cancer Samples. Front Cell Dev Biol 2022; 10:815843. [PMID: 35178391 PMCID: PMC8844453 DOI: 10.3389/fcell.2022.815843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common cancer in the world, and DNA methylation plays a key role in the occurrence and development of breast cancer. However, the effect of DNA methylation in different gene functional regions on gene expression and the effect of gene expression on breast cancer is not completely clear. In our study, we computed and analyzed DNA methylation, gene expression, and clinical data in the TCGA database. Firstly, we calculated the distribution of abnormal DNA methylated probes in 12 regions, found the abnormal DNA methylated probes in down-regulated genes were highly enriched, and the number of hypermethylated probes in the promoter region was 6.5 times than that of hypomethylated probes. Secondly, the correlation coefficients between abnormal DNA methylated values in each functional region of differentially expressed genes and gene expression values were calculated. Then, co-expression analysis of differentially expressed genes was performed, 34 hub genes in cancer-related pathways were obtained, of which 11 genes were regulated by abnormal DNA methylation. Finally, a multivariate Cox regression analysis was performed on 27 probes of 11 genes. Three DNA methylation probes (cg13569051 and cg14399183 of GSN, and cg25274503 of CAV2) related to survival were used to construct a prognostic model, which has a good prognostic ability. Furthermore, we found that the cg25274503 hypermethylation in the promoter region inhibited the expression of the CAV2, and the hypermethylation of cg13569051 and cg14399183 in the 5′UTR region inhibited the expression of GSN. These results may provide possible molecular targets for breast cancer.
Collapse
Affiliation(s)
- Yan-Ni Cao
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China.,The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Yu-Xian Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| |
Collapse
|
6
|
Cao YN, Li QZ, Liu YX, Jin W, Hou R. Discovering the key genes and important DNA methylation regions in breast cancer. Hereditas 2022; 159:7. [PMID: 35063044 PMCID: PMC8781361 DOI: 10.1186/s41065-022-00220-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Breast cancer is the malignant tumor with the highest incidence in women. DNA methylation has an important effect on breast cancer, but the effect of abnormal DNA methylation on gene expression in breast cancer is still unclear. Therefore, it is very important to find therapeutic targets related to DNA methylation. RESULTS In this work, we calculated the DNA methylation distribution and gene expression level in cancer and para-cancerous tissues for breast cancer samples. We found that DNA methylation in key regions is closely related to gene expression by analyzing the relationship between the distribution characteristics of DNA methylation in different regions and the change of gene expression level. Finally, the 18 key genes (17 tumor suppressor genes and 1 oncogene) related to prognosis were confirmed by the survival analysis of clinical data. Some important DNA methylation regions in these genes that result in breast cancer were found. CONCLUSIONS We believe that 17 TSGs and 1 oncogene may be breast cancer biomarkers regulated by DNA methylation in key regions. These results will help to explore DNA methylation biomarkers as potential therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Yan-Ni Cao
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, No.235 West Daxue Street, Saihan District, Hohhot, 010021, P.R. China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, No.235 West Daxue Street, Saihan District, Hohhot, 010021, P.R. China.
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China.
| | - Yu-Xian Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, No.235 West Daxue Street, Saihan District, Hohhot, 010021, P.R. China
| | - Wen Jin
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, No.235 West Daxue Street, Saihan District, Hohhot, 010021, P.R. China
| | - Rui Hou
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, No.235 West Daxue Street, Saihan District, Hohhot, 010021, P.R. China
| |
Collapse
|
7
|
Determination of Genetic and Epigenetic Modifications-Related Prognostic Biomarkers of Breast Cancer: Genome High-Throughput Data Analysis. JOURNAL OF ONCOLOGY 2021; 2021:2143362. [PMID: 34557230 PMCID: PMC8455195 DOI: 10.1155/2021/2143362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
The high heterogeneity of breast cancer (BRCA) makes it more challenging to interpret the genetic variation mechanisms involved in BRCA pathogenesis and prognosis. Areas with high DNA methylation (such as CpG islands) were accompanied by copy number variation (CNV), and these genomic variations affected the level of DNA methylation. In this study, we characterized intertumor heterogeneity and analyzed the effects of CNV on DNA methylation and gene expression. In addition, we performed a Genetic Set Enrichment Analysis (GSEA) to identify key pathways for changes between patients with low and high expression of genes. Our analysis found two key genes, namely, HPDL and SOX17. The protein expressed by HPDL is 4-hydroxyphenylpyruvate dioxygenase-like protein, which has dioxygenase activity. SOX17 is a transcription factor that can inhibit Wnt signaling, promote the degradation of activated CTNNB1, and participate in cell proliferation. Our analysis found that the CNV of HPDL and SOX17 is not only related to the patient's prognosis, but also related to gene methylation and expression levels affecting the patient's survival time. Among them, the high-methylation, low-expression HPDL and SOX17 showed poor prognosis. And the addition of two copies of SOX17 is associated with a lower survival rate, while a decrease in the copy number of HPDL also suggests a poor prognosis. This study provided an effective bioinformatics basis for further exploration of molecular mechanisms related to BRCA and assessment of patient prognosis, but the development of biomarkers for diagnosis and treatment still requires further clinical data validation.
Collapse
|
8
|
Ren C, Tang X, Lan H. Comprehensive analysis based on DNA methylation and RNA-seq reveals hypermethylation of the up-regulated WT1 gene with potential mechanisms in PAM50 subtypes of breast cancer. PeerJ 2021; 9:e11377. [PMID: 33987034 PMCID: PMC8103922 DOI: 10.7717/peerj.11377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/08/2021] [Indexed: 11/20/2022] Open
Abstract
Background Breast cancer (BC), one of the most widespread cancers worldwide, caused the deaths of more than 600,000 women in 2018, accounting for about 15% of all cancer-associated deaths in women that year. In this study, we aimed to discover potential prognostic biomarkers and explore their molecular mechanisms in different BC subtypes using DNA methylation and RNA-seq. Methods We downloaded the DNA methylation datasets and the RNA expression profiles of primary tissues of the four BC molecular subtypes (luminal A, luminal B, basal-like, and HER2-enriched), as well as the survival information from The Cancer Genome Atlas (TCGA). The highly expressed and hypermethylated genes across all the four subtypes were screened. We examined the methylation sites and the downstream co-expressed genes of the selected genes and validated their prognostic value using a different dataset (GSE20685). For selected transcription factors, the downstream genes were predicted based on the Gene Transcription Regulation Database (GTRD). The tumor microenvironment was also evaluated based on the TCGA dataset. Results We found that Wilms tumor gene 1 (WT1), a transcription factor, was highly expressed and hypermethylated in all the four BC subtypes. All the WT1 methylation sites exhibited hypermethylation. The methylation levels of the TSS200 and 1stExon regions were negatively correlated with WT1 expression in two BC subtypes, while that of the gene body region was positively associated with WT1 expression in three BC subtypes. Patients with low WT1 expression had better overall survival (OS). Five genes including COL11A1, GFAP, FGF5, CD300LG, and IGFL2 were predicted as the downstream genes of WT1. Those five genes were dysregulated in the four BC subtypes. Patients with a favorable 6-gene signature (low expression of WT1 and its five predicted downstream genes) exhibited better OS than that with an unfavorable 6-gene signature. We also found a correlation between WT1 and tamoxifen using STITCH. Higher infiltration rates of CD8 T cells, plasma cells, and monocytes were found in the lower quartile WT1 group and the favorable 6-gene signature group. In conclusion, we demonstrated that WT1 is hypermethylated and up-regulated in the four BC molecular subtypes and a 6-gene signature may predict BC prognosis.
Collapse
Affiliation(s)
- Chongyang Ren
- Department of Breast Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xiaojiang Tang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Haitao Lan
- Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
9
|
STAT5 Regulation of Sex-Dependent Hepatic CpG Methylation at Distal Regulatory Elements Mapping to Sex-Biased Genes. Mol Cell Biol 2021; 41:MCB.00166-20. [PMID: 33199496 DOI: 10.1128/mcb.00166-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
Growth hormone-activated STAT5b is an essential regulator of sex-differential gene expression in mouse liver; however, its impact on hepatic gene expression and epigenetic responses is poorly understood. Here, we found a substantial, albeit incomplete loss of liver sex bias in hepatocyte-specific STAT5a/STAT5b (collectively, STAT5)-deficient mouse liver. In male liver, many male-biased genes were downregulated in direct association with the loss of STAT5 binding; many female-biased genes, which show low STAT5 binding, were derepressed, indicating an indirect mechanism for repression by STAT5. Extensive changes in CpG methylation were seen in STAT5-deficient liver, where sex differences were abolished at 88% of ∼1,500 sex-differentially methylated regions, largely due to increased DNA methylation upon STAT5 loss. STAT5-dependent CpG hypomethylation was rarely found at proximal promoters of STAT5-dependent genes. Rather, STAT5 primarily regulated the methylation of distal enhancers, where STAT5 deficiency induced widespread hypermethylation at genomic regions enriched for accessible chromatin, enhancer histone marks (histone H3 lysine 4 monomethylation [H3K4me1] and histone H3 lysine 27 acetylation [H3K27ac]), STAT5 binding, and DNA motifs for STAT5 and other transcription factors implicated in liver sex differences. Thus, the sex-dependent binding of STAT5 to liver chromatin is closely linked to the sex-dependent demethylation of distal regulatory elements linked to STAT5-dependent genes important for liver sex bias.
Collapse
|
10
|
Sher G, Salman NA, Khan AQ, Prabhu KS, Raza A, Kulinski M, Dermime S, Haris M, Junejo K, Uddin S. Epigenetic and breast cancer therapy: Promising diagnostic and therapeutic applications. Semin Cancer Biol 2020; 83:152-165. [PMID: 32858230 DOI: 10.1016/j.semcancer.2020.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022]
Abstract
The global burden of breast cancer (BC) is increasing significantly. This trend is caused by several factors such as late diagnosis, limited treatment options for certain BC subtypes, drug resistance which all lead to poor clinical outcomes. Recent research has reported the role of epigenetic alterations in the mechanism of BC pathogenesis and its hallmarks include drug resistance and stemness features. The understanding of these modifications and their significance in the management of BC carcinogenesis is challenging and requires further attention. Nevertheless, it promises to provide novel insight needed for utilizing these alterations as potential diagnostic, prognostic markers, predict treatment efficacy, as well as therapeutic agents. This highlights the importance of continuing research development to further advance the existing knowledge on epigenetics and BC carcinogenesis to overcome the current challenges. Hence, this review aims to shed light and discuss the current state of epigenetics research in the diagnosis and management of BC.
Collapse
Affiliation(s)
- Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Nadia Aziz Salman
- Kingston University London, School of Life Science, Pharmacy and Chemistry, SEC Faculty, Kingston, upon Thames, London, KT1 2EE, UK
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Sidra Medicine, P.O. Box 26999, Qatar; Laboratory Animal Research Center, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Kulsoom Junejo
- General Surgery Department, Hamad General Hospital, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar.
| |
Collapse
|
11
|
Yang D, Holsten T, Börnigen D, Frank S, Mawrin C, Glatzel M, Schüller U. Ependymoma relapse goes along with a relatively stable epigenome, but a severely altered tumor morphology. Brain Pathol 2020; 31:33-44. [PMID: 32633004 PMCID: PMC8018105 DOI: 10.1111/bpa.12875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 11/30/2022] Open
Abstract
The molecular biology of ependymomas is not well understood and this is particularly true for ependymoma relapses. We aimed at finding out if and to which extent, relapses differ from their corresponding primary tumors on the morphological, chromosomal and epigenetic level. We investigated 24 matched ependymoma primary and relapsed tumor samples and, as a first step, compared cell density, necrosis, vessel proliferation, Ki67 proliferative index, trimethylation at H3K27 and expression of CXorf67. For the investigation of global methylation profiles, we used public data in order to analyze copy number variation profiles, differential methylation, methylation status and fractions of hypo‐ and hypermethylated CpGs in different epigenomic substructures. Morphologically, we found a significant increase with relapse in cell density and proliferation. H3K27 trimethylation and CXorf67 expression remained stable between primary and relapse tumor samples, and the analysis of DNA methylation profiles neither revealed significant differences in copy number variations nor differentially methylated regions. Significant differences in the methylation status were found for CpG islands, but also in N Shelves or S Shelves, depending on the molecular subgroup. The fraction of probes changing their methylation in the epigenomic substructures appeared subgroup‐specific. Most changes occur in CpG islands, for which relapsed tumors demonstrate higher methylation values than primary tumors. The morphological differences reflect increased aggressiveness upon ependymoma relapse, but, despite slight changes, this observation does not appear to be sufficiently explained by epigenetic changes.
Collapse
Affiliation(s)
- Denise Yang
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Till Holsten
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Daniela Börnigen
- Bioinformatics Core Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Frank
- Division for Neuropathology, University Hospital Basel, Basel, Switzerland
| | - Christian Mawrin
- Institute for Neuropathology, University of Magdeburg, Magdeburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Jin W, Li QZ, Liu Y, Zuo YC. Effect of the key histone modifications on the expression of genes related to breast cancer. Genomics 2019; 112:853-858. [PMID: 31170440 DOI: 10.1016/j.ygeno.2019.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/16/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
Abnormal histone modifications (HMs) and transcription factors (TFs) can alter the expression of cancer-related genes to promote tumorigenesis. We studied the variations of 11 HMs and 2 TFs in human breast cancer cells (MCF-7) compared to human normal mammary epithelial cells (HMEC), and the effects of HMs/TFs in various regions of the genome on the expression changes of breast cancer-related genes. Based on HMs and TFs signals' differences between MCF-7 and HMEC flanking TSSs, the up- and down-regulated genes in MCF-7 were predicted by Random Forest, and important HMs and regions were found. Results indicate that H3K79me2, H3K27ac, and H3K4me1 are particularly important for the changes of gene expression in MCF-7. Especially, H3K79me2 around the 60-th bin flanking TSSs may be the key for regulating gene expression. Our studies reveal H3K79me2 may be a core HM for breast cancer.
Collapse
Affiliation(s)
- Wen Jin
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China.
| | - Yuan Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Yong-Chun Zuo
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|