1
|
Wang K, Zhao X, Yang S, Qi X, Zang G, Li C, Li A, Chen B. Milk-derived exosome nanovesicles: recent progress and daunting hurdles. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 38595109 DOI: 10.1080/10408398.2024.2338831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Raw milk is the foundation of quality and safety in the dairy industry, and improving milk source management is the fundamental guarantee. Milk-derived exosomes (MDEs) are nanoscale information transfer molecules secreted by mammary cells with unique content and high stability, which can be used not only as potential markers to analyze key traits of lactation, reproduction, nutrition and health of animals, but also help farm managers to take timely interventions to improve animal welfare, milk quality, and functional traits. Our review first outlines the latest advances in MDEs isolation and purification, compositional analysis and characterization tools. We then provide a comprehensive summary of recent applications of MDEs liquid biopsy in breed selection, disease prevention and control, and feeding management. Finally, we evaluate the impact of processing on the stability of MDEs to offer guidance for dairy production and storage. The limitations and challenges in the development and use of MDEs markers are also discussed. As a noninvasive marker with high sensitivity and specificity, the MDEs-mediated assay technology is expected to be a powerful tool for measuring cow health and raw milk quality, enabling dynamic and precise regulation of dairy cows and full traceability of raw milk.
Collapse
Affiliation(s)
- Kaili Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Sijia Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaoxi Qi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Guofang Zang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chun Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Research Institute, Harbin, China
| | - Aili Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Research Institute, Harbin, China
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
2
|
Guo D, Wei Y, Li X, Bai Y, Liu Z, Li J, Chen Z, Shi B, Zhang X, Zhao Z, Hu J, Han X, Wang J, Liu X, Li S, Zhao F. Comprehensive Analysis of miRNA and mRNA Expression Profiles during Muscle Development of the Longissimus Dorsi Muscle in Gannan Yaks and Jeryaks. Genes (Basel) 2023; 14:2220. [PMID: 38137042 PMCID: PMC10742600 DOI: 10.3390/genes14122220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
A hybrid offspring of Gannan yak and Jersey cattle, the Jeryak exhibits apparent hybrid advantages over the Gannan yak in terms of production performance and other factors. The small non-coding RNAs known as miRNAs post-transcriptionally exert a significant regulatory influence on gene expression. However, the regulatory mechanism of miRNA associated with muscle development in Jeryak remains elusive. To elucidate the regulatory role of miRNAs in orchestrating skeletal muscle development in Jeryak, we selected longissimus dorsi muscle tissues from Gannan yak and Jeryak for transcriptome sequencing analysis. A total of 230 (DE) miRNAs were identified in the longissimus dorsi muscle of Gannan yak and Jeryak. The functional enrichment analysis revealed a significant enrichment of target genes from differentially expressed (DE)miRNAs in signaling pathways associated with muscle growth, such as the Ras signaling pathway and the MAPK signaling pathway. The network of interactions between miRNA and mRNA suggest that some (DE)miRNAs, including miR-2478-z, miR-339-x, novel-m0036-3p, and novel-m0037-3p, played a pivotal role in facilitating muscle development. These findings help us to deepen our understanding of the hybrid dominance of Jeryaks and provide a theoretical basis for further research on the regulatory mechanisms of miRNAs associated with Jeryak muscle growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | | | | | | | | | | | | |
Collapse
|
3
|
Bai J, Xu H, Fang J, Zhang C, Song J, Zhang X, Hao B, Yin B, Xia G. miR-15a regulates the preadipocyte differentiation by targeting ABAT gene in Yanbian yellow cattle. Anim Biotechnol 2023; 34:2343-2352. [PMID: 35732048 DOI: 10.1080/10495398.2022.2088552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
MicroRNAs (miRNAs) are small, single-stranded, noncoding RNAs of approximately 21 to 23 nucleotides in length. Owing to their regulation of gene expression and many physiological processes including fat metabolism, they have become a popular research topic in recent years; however, the exact functional mechanisms by which they regulate fat metabolism have not been fully elucidated. Here, we identified miR-15a, which specifically acquired the 3' untranslated region (UTR) containing 4-aminobutyrate aminotransferase (ABAT), and validated the regulation of its expression and involvement in adipogenesis mechanisms. We used a dual-luciferase reporter assay and transfection-mediated miR-15a overexpression and inhibition in Yanbian yellow cattle preadipocytes to investigate the role of miR-15a in adipogenesis. The results showed that miR-15a directly targets the 3'UTR of ABAT and downregulates its expression. Additionally, at the protein and mRNA levels, miR-15a overexpression using a miRNA mimic inhibited triglyceride accumulation and downregulated lipogenic peroxisome proliferator-activated receptor γ and CCAAT enhancer-binding protein α, whereas miR-15a inhibition had the opposite effect. The above results indicated that miR-15a regulated the differentiation of Yanbian yellow cattle preadipocytes by inhibiting the expression of ABAT. Furthermore, our findings suggested that miR-15a and its target gene(s) might represent new targets for investigating intramuscular fat deposits in cattle and treating human obesity.
Collapse
Affiliation(s)
- Jinhui Bai
- Agriculture College, Yanbian University, Yanji, China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, China
| | - Hongyan Xu
- Agriculture College, Yanbian University, Yanji, China
| | - Jiachen Fang
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Congcong Zhang
- Agriculture College, Yanbian University, Yanji, China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, China
- Integration College, Yanbian University, Yanji, China
| | - Jixuan Song
- Agriculture College, Yanbian University, Yanji, China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, China
| | - Xinxin Zhang
- Agriculture College, Yanbian University, Yanji, China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, China
- Integration College, Yanbian University, Yanji, China
| | - Beibei Hao
- Agriculture College, Yanbian University, Yanji, China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, China
- Integration College, Yanbian University, Yanji, China
| | - Baozhen Yin
- Agriculture College, Yanbian University, Yanji, China
| | - Guangjun Xia
- Agriculture College, Yanbian University, Yanji, China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, China
- Integration College, Yanbian University, Yanji, China
| |
Collapse
|
4
|
Wang Z, Tian W, Wang D, Guo Y, Cheng Z, Zhang Y, Li X, Zhi Y, Li D, Li Z, Jiang R, Li G, Tian Y, Kang X, Li H, Dunn IC, Liu X. Comparative analyses of dynamic transcriptome profiles highlight key response genes and dominant isoforms for muscle development and growth in chicken. Genet Sel Evol 2023; 55:73. [PMID: 37872550 PMCID: PMC10591418 DOI: 10.1186/s12711-023-00849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Modern breeding strategies have resulted in significant differences in muscle mass between indigenous chicken and specialized broiler. However, the molecular regulatory mechanisms that underlie these differences remain elusive. The aim of this study was to identify key genes and regulatory mechanisms underlying differences in breast muscle development between indigenous chicken and specialized broiler. RESULTS Two time-series RNA-sequencing profiles of breast muscles were generated from commercial Arbor Acres (AA) broiler (fast-growing) and Chinese indigenous Lushi blue-shelled-egg (LS) chicken (slow-growing) at embryonic days 10, 14, and 18, and post-hatching day 1 and weeks 1, 3, and 5. Principal component analysis of the transcriptome profiles showed that the top four principal components accounted for more than 80% of the total variance in each breed. The developmental axes between the AA and LS chicken overlapped at the embryonic stages but gradually separated at the adult stages. Integrative investigation of differentially-expressed transcripts contained in the top four principal components identified 44 genes that formed a molecular network associated with differences in breast muscle mass between the two breeds. In addition, alternative splicing analysis revealed that genes with multiple isoforms always had one dominant transcript that exhibited a significantly higher expression level than the others. Among the 44 genes, the TNFRSF6B gene, a mediator of signal transduction pathways and cell proliferation, harbored two alternative splicing isoforms, TNFRSF6B-X1 and TNFRSF6B-X2. TNFRSF6B-X1 was the dominant isoform in both breeds before the age of one week. A switching event of the dominant isoform occurred at one week of age, resulting in TNFRSF6B-X2 being the dominant isoform in AA broiler, whereas TNFRSF6B-X1 remained the dominant isoform in LS chicken. Gain-of-function assays demonstrated that both isoforms promoted the proliferation of chicken primary myoblasts, but only TNFRSF6B-X2 augmented the differentiation and intracellular protein content of chicken primary myoblasts. CONCLUSIONS For the first time, we identified several key genes and dominant isoforms that may be responsible for differences in muscle mass between slow-growing indigenous chicken and fast-growing commercial broiler. These findings provide new insights into the regulatory mechanisms underlying breast muscle development in chicken.
Collapse
Affiliation(s)
- Zhang Wang
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
| | - Dandan Wang
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
| | - Zhimin Cheng
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
| | - Yanyan Zhang
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
| | - Xinyan Li
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
| | - Yihao Zhi
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China.
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China.
| | - Ian C Dunn
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China.
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China.
| |
Collapse
|
5
|
Jiang Y, Liu J, Liu H, Zhang W, Li X, Liu L, Zhou M, Wang J, Su S, Ding X, Wang C. miR-381-3p Inhibits Intramuscular Fat Deposition through Targeting FABP3 by ceRNA Regulatory Network. BIOLOGY 2022; 11:biology11101497. [PMID: 36290402 PMCID: PMC9598794 DOI: 10.3390/biology11101497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 01/24/2023]
Abstract
Intramuscular fat (IMF) deposition is an important determinant of pork quality and a complex process facilitated by non-coding ceRNAs. In this study, 52 Berkshire × Anqing Sixwhite crossbred pigs were slaughtered to measure eight carcass and pork quality traits. Whole-transcriptome sequencing analysis was performed using longissimus dorsi samples of six low- and high-IMF samples; 34 ceRNA networks, based on 881, 394, 158 differentially expressed (DE) lncRNAs, miRNAs, and mRNAs, were constructed. Following weighted gene co-expression network analysis between the low and high IMF, only one ceRNA, lncRNA4789/miR-381-3p/FABP3, that showed similar DE trend in longissimus dorsi tissue was retained. Dual-luciferase reporter assays further indicated that FABP3 was a direct, functional target of miR-381-3p, where miR-381-3p overexpression inhibited the mRNA and protein expression of FABP3. In addition, overexpressed lncRNA4789 attenuated the effect of miR-381-3p on FABP3 by sponging miR-381-3p. Cell function verification experiment demonstrated that miR-381-3p suppressed IMF deposition by inhibiting preadipocyte cell differentiation and lipid droplet deposition via the suppression of FABP3 expression in the peroxisome proliferator-activated receptor signalling pathway, whereas lncRNA4789 rescued FABP3 expression by sponging miR-381-3p. Our study may aid in identifying novel molecular markers for its optimization in IMF which is of importance in breeding for improving pork quality.
Collapse
Affiliation(s)
- Yao Jiang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- National Animal Husbandry Service, Beijing 100125, China
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiali Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huatao Liu
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Zhang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiaojin Li
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Linqing Liu
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Mei Zhou
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Jieru Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shiguang Su
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Correspondence:
| |
Collapse
|
6
|
Shen J, Hao Z, Luo Y, Zhen H, Liu Y, Wang J, Hu J, Liu X, Li S, Zhao Z, Liu Y, Yang S, Wang L. Deep Small RNA Sequencing Reveals Important miRNAs Related to Muscle Development and Intramuscular Fat Deposition in Longissimus dorsi Muscle From Different Goat Breeds. Front Vet Sci 2022; 9:911166. [PMID: 35769318 PMCID: PMC9234576 DOI: 10.3389/fvets.2022.911166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/09/2022] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have been shown to play important post-transcriptional regulatory roles in the growth and development of skeletal muscle tissues. However, limited research into the effect of miRNAs on muscle development in goats has been reported. In this study, Liaoning cashmere (LC) goats and Ziwuling black (ZB) goats with significant phenotype difference in meat production performance were selected and the difference in Longissimus dorsi muscle tissue expression profile of miRNAs between the two goat breeds was then compared using small RNA sequencing. A total of 1,623 miRNAs were identified in Longissimus dorsi muscle tissues of the two goat breeds, including 410 known caprine miRNAs, 928 known species-conserved miRNAs and 285 novel miRNAs. Of these, 1,142 were co-expressed in both breeds, while 230 and 251 miRNAs were only expressed in LC and ZB goats, respectively. Compared with ZB goats, 24 up-regulated miRNAs and 135 miRNAs down-regulated were screened in LC goats. A miRNA-mRNA interaction network showed that the differentially expressed miRNAs would target important functional genes associated with muscle development and intramuscular fat deposition. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the target genes of differentially expressed miRNAs were significantly enriched in Ras, Rap 1, FoxO, and Hippo signaling pathways. This study suggested that these differentially expressed miRNAs may be responsible for the phenotype differences in meat production performance between the two goat breeds, thereby providing an improved understanding of the roles of miRNAs in muscle tissue of goats.
Collapse
|
7
|
Zhou Z, Li K, Liu J, Zhang H, Fan Y, Chen Y, Han H, Yang J, Liu Y. Expression Profile Analysis to Identify Circular RNA Expression Signatures in Muscle Development of Wu'an Goat Longissimus Dorsi Tissues. Front Vet Sci 2022; 9:833946. [PMID: 35518637 PMCID: PMC9062782 DOI: 10.3389/fvets.2022.833946] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The growth and development of skeletal muscle is a physiological process regulated by a variety of genes and signaling pathways. As a posttranscriptional regulatory factor, circRNA plays a certain regulatory role in the development of animal skeletal muscle in the form of a miRNA sponge. However, the role of circRNAs in muscle development and growth in goats is still unclear. In our study, apparent differences in muscle fibers in Wu'an goats of different ages was firstly detected by hematoxylin-eosin (HE) staining, the circRNA expression profiles of longissimus dorsi muscles from 1-month-old (mon1) and 9-month-old (mon9) goats were screened by RNA-seq and verified by RT-qPCR. The host genes of differentially expressed (DE) circRNAs were predicted, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses (KEGG) of host genes with DE circRNAs were performed to explore the functions of circRNAs. The circRNA-miRNA-mRNA networks were then constructed using Cytoscape software. Ten significantly differentially expressed circRNAs were also verified in the mon1 and mon9 groups by RT-qPCR. Luciferase Reporter Assay was used to verify the binding site between circRNA and its targeted miRNA. The results showed that a total of 686 DE circRNAs were identified between the mon9 and mon1 groups, of which 357 were upregulated and 329 were downregulated. Subsequently, the 467 host genes of DE circRNAs were predicted using Find_circ and CIRI software. The circRNA-miRNA-mRNA network contained 201 circRNAs, 85 miRNAs, and 581 mRNAs; the host mRNAs were associated with "muscle fiber development" and "AMPK signaling pathway" and were enriched in the FoxO signaling pathway. Competing endogenous RNA (ceRNA) network analysis showed that novel_circ_0005314, novel_circ_0005319, novel_circ_0009256, novel_circ_0009845, novel_circ_0005934 and novel_circ_0000134 may play important roles in skeletal muscle growth and development between the mon9 and mon1 groups. Luciferase Reporter Assay confirmed the combination between novel_circ_0005319 and chi-miR-199a-5p, novel_circ_0005934 and chi-miR-450-3p and novel_circ_0000134 and chi-miR-655. Our results provide specific information related to goat muscle development and a reference for the goat circRNA profile.
Collapse
Affiliation(s)
- Zuyang Zhou
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Kunyu Li
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Jiannan Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Hui Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yekai Fan
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yulin Chen
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Haiyin Han
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Junqi Yang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yufang Liu
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
8
|
Yang X, Wu G, Zhang Q, Chen X, Li J, Han Q, Yang L, Wang C, Huang M, Li Y, Chen J, LiLi, Wang H, Liu K. ACSM3 suppresses the pathogenesis of high-grade serous ovarian carcinoma via promoting AMPK activity. Cell Oncol (Dordr) 2022; 45:151-161. [PMID: 35124784 DOI: 10.1007/s13402-021-00658-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 11/03/2022] Open
Abstract
PURPOSE Ovarian carcinoma is the fifth commonest malignancy in females and exhibits a high recurrence rate. High-grade serous ovarian carcinoma (HGSOC) is the main histologic subtype. It displays extensive genetic heterogeneity. Here, we aimed to identify potential therapeutic targets for HGSOC. METHODS Both bioinformatic data from TCGA and 73 pairs of tumor and normal samples from patients were analyzed to reveal the expression level of ACSM3 in HGSOC. Next, cellular and animal experiments, including cell proliferation, colony formation and xenograft assays were performed to explore the suppressive function of ACSM3. Finally, biochemical methods, AMP/ATP ratio measurements and Western blotting were used to elucidate the mechanism underlying the ACSM3-AMPK axis in HGSOC. RESULTS After analyzing transcriptome data of TCGA HGSOC samples, we found that ACSM3 is down-regulated in patient samples compared with normal controls. This observation was validated using data from primary clinical samples. Proliferation, soft agar colony formation and xenograft assays revealed that ACSM3 is able to suppress HGSOC tumor growth both in vitro and in vivo. Moreover, we found that ACSM3 overexpression increased the AMP/ATP ratio and the phosphorylation level of AMPK at threonine 172. In addition, we found that AMPK silencing in EFO21 and SKOV3 cells completely abolished the anti-oncogenic effect of ACSM3. CONCLUSION Our data indicate that the ACSM3-AMPK axis is involved in the pathogenesis of HGSOC and, as such, may act as a therapeutic target for this cancer.
Collapse
Affiliation(s)
- Xu Yang
- Department of Obstetrics and Gynecology, The Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese Medicine, No. 33, Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, People's Republic of China.
| | - GuiXia Wu
- Department of Physiology, School of Basic Medicine, Xinjiang Medical University, Urumchi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Qin Zhang
- Department of Obstetrics and Gynecology, The Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese Medicine, No. 33, Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, People's Republic of China
| | - Xia Chen
- Department of Obstetrics and Gynecology, The Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese Medicine, No. 33, Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, People's Republic of China
| | - Juan Li
- Department of Obstetrics and Gynecology, The Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese Medicine, No. 33, Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, People's Republic of China
| | - Qian Han
- Department of Obstetrics and Gynecology, The Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese Medicine, No. 33, Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, People's Republic of China
| | - Lei Yang
- Department of Obstetrics and Gynecology, The Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese Medicine, No. 33, Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, People's Republic of China
| | - Chendi Wang
- Department of Obstetrics and Gynecology, The Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese Medicine, No. 33, Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, People's Republic of China
| | - Mei Huang
- Department of Obstetrics and Gynecology, The Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese Medicine, No. 33, Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, People's Republic of China
| | - Yun Li
- Department of Obstetrics and Gynecology, The Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese Medicine, No. 33, Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, People's Republic of China
| | - Jiao Chen
- Department of Obstetrics and Gynecology, The Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese Medicine, No. 33, Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, People's Republic of China
| | - LiLi
- Department of Obstetrics and Gynecology, The Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese Medicine, No. 33, Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, People's Republic of China
| | - Haiying Wang
- Department of Obstetrics and Gynecology, The Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese Medicine, No. 33, Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, People's Republic of China
| | - Kaijiang Liu
- Department of Gynecological Oncology, Ren Ji Hospital, School of Medicine, Shanghai JiaoTong University, No145 Middle Shandong Road, Huangpu District, Shanghai, 200001, People's Republic of China.
| |
Collapse
|
9
|
Huang C, Ge F, Ma X, Dai R, Dingkao R, Zhaxi Z, Burenchao G, Bao P, Wu X, Guo X, Chu M, Yan P, Liang C. Comprehensive Analysis of mRNA, lncRNA, circRNA, and miRNA Expression Profiles and Their ceRNA Networks in the Longissimus Dorsi Muscle of Cattle-Yak and Yak. Front Genet 2021; 12:772557. [PMID: 34966412 PMCID: PMC8710697 DOI: 10.3389/fgene.2021.772557] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Cattle-yak, as the hybrid offspring of cattle (Bos taurus) and yak (Bos grunniens), demonstrates obvious heterosis in production performance. Male hybrid sterility has been focused on for a long time; however, the mRNAs and non-coding RNAs related to muscle development as well as their regulatory networks remain unclear. The phenotypic data showed that the production performance (i.e., body weight, withers height, body length, and chest girth) of cattle-yak was significantly better than that of the yak, and the economic benefits of the cattle-yak were higher under the same feeding conditions. Then, we detected the expression profiles of the longissimus dorsi muscle of cattle-yak and yak to systematically reveal the molecular basis using the high-throughput sequencing technology. Here, 7,126 mRNAs, 791 lncRNAs, and 1,057 circRNAs were identified to be differentially expressed between cattle-yaks and yaks in the longissimus dorsi muscle. These mRNAs, lncRNA targeted genes, and circRNA host genes were significantly enriched in myoblast differentiation and some signaling pathways related to muscle development (such as HIF-1 signaling pathway and PI3K-Akt signaling pathway). We constructed a competing endogenous RNA (ceRNA) network and found that some non-coding RNAs differentially expressed may be involved in the regulation of muscle traits. Taken together, this study may be used as a reference tool to provide the molecular basis for studying muscle development.
Collapse
Affiliation(s)
- Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fei Ge
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Renqing Dingkao
- Livestock Institute of Gannan Tibetan Autonomous Prefecture, Hezuo, China
| | - Zhuoma Zhaxi
- Haixi Agricultural and Animal Husbandry Technology Extension Service Center, Qinghai, China
| | - Getu Burenchao
- Haixi Agricultural and Animal Husbandry Technology Extension Service Center, Qinghai, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
10
|
Zhang L, Li WP. New Cu(II) coordination polymer inhibits cervical cancer development by regulating BRCA1 protein via miR-9-5p. J Inorg Biochem 2021; 226:111655. [PMID: 34740040 DOI: 10.1016/j.jinorgbio.2021.111655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 01/22/2023]
Abstract
A novel Cu(II)-based coordination polymer [chemical composition, {[CuL(CH3CO2)](H2O)(DMF)}n (1, DMF = N,N-dimethylformamide) was successfully prepared via Cu(NO3)2·3H2O reaction with HL ligand in DMF and H2O mixture by using a hetero-donor ligand 4-(bis(4-(4H-1,2,4-triazol-4-yl)phenyl)amino)benzoic acid (HL) featuring carboxylic acid and triazole groups. Reverse transcription-polymerase chain reaction (RT-PCR) was adopted to determine miR-9-5p expression in cervical cancer cells after compound treatment. Bioinformatic analysis and luciferase reporter assay were utilized to confirm miR-9-5p and BRCA1 interaction to discover the potential goal of miR-9-5p in cervical cancer cells. Cell Counting Kit-8 (CCK-8) and reactive oxygen species (ROS) detection kits were adopted to examine cancer cell proliferation and ROS accumulation after compound treatment.
Collapse
Affiliation(s)
- Lin Zhang
- Luohe Medical College, Luohe, Henan, China.
| | | |
Collapse
|
11
|
Li Z, He X, Zhang X, Zhang J, Guo X, Sun W, Chu M. Analysis of Expression Profiles of CircRNA and MiRNA in Oviduct during the Follicular and Luteal Phases of Sheep with Two Fecundity ( FecB Gene) Genotypes. Animals (Basel) 2021; 11:ani11102826. [PMID: 34679847 PMCID: PMC8532869 DOI: 10.3390/ani11102826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
CircRNA and miRNA, as classes of non-coding RNA, have been found to play pivotal roles in sheep reproduction. There are many reports of circRNA and miRNA in the ovary and uterus, but few in the oviduct. In this study, RNA-Seq was performed to analyze the expression profile of circRNA and miRNA in the oviduct during the follicular phase and luteal phase of sheep with FecBBB and FecB++ genotypes. The results showed that a total of 3223 circRNAs and 148 miRNAs were identified. A total of 15 DE circRNAs and 40 DE miRNAs were found in the comparison between the follicular phase and luteal phase, and 1 DE circRNA and 18 DE miRNAs were found in the comparison between the FecBBB genotype and FecB++ genotype. GO and KEGG analyses showed that the host genes of DE circRNAs were mainly enriched in the Rap1 signaling pathway, PI3K-Akt signaling pathway and neuroactive ligand-receptor interactions. Novel_circ_0004065, novel_circ_0005109, novel_circ_0012086, novel_circ_0014274 and novel_circ_0001794 were found to be possibly involved in the oviductal reproduction process. GO and KEGG analyses showed that the target genes of DE miRNAs were mainly enriched in insulin secretion, the cAMP signaling pathway, the cGMP-PKG signaling pathway, the Rap1 signaling pathway and the TGF-β signaling pathway, and the target genes LPAR1, LPAR2, FGF18, TACR3, BMP6, SMAD4, INHBB, SKP1 and TGFBR2 were found to be associated with the reproductive process. Miranda software was used to identify 27 miRNAs that may bind to 13 DE circRNAs, including miR-22-3p (target to novel_circ_0004065), miR-127, miR-136 (target to novel_circ_0000417), miR-27a (target to novel_circ_0014274) and oar-miR-181a (target to novel_circ_ 0017815). The results of this study will help to elucidate the regulatory mechanisms of circRNAs and miRNAs in sheep reproduction. Our study, although not establishing direct causal relationships of the circRNA and miRNA changes, enriches the sheep circRNA and miRNA database and provides a basis for further studies on sheep reproduction.
Collapse
Affiliation(s)
- Zhifeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.L.); (X.H.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.L.); (X.H.)
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.); (X.G.)
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.); (X.G.)
| | - Xiaofei Guo
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.); (X.G.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (W.S.); (M.C.); Tel.: +86-0514-8797-9213 (W.S.); +86-010-6281-9850 (M.C.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.L.); (X.H.)
- Correspondence: (W.S.); (M.C.); Tel.: +86-0514-8797-9213 (W.S.); +86-010-6281-9850 (M.C.)
| |
Collapse
|
12
|
Gardner JM, Ineck NE, Quarnberg SM, Legako JF, Carpenter CE, Rood KA, Thornton-Kurth KJ. The Influence of Maternal Dietary Intake During Mid-Gestation on Growth, Feedlot Performance, miRNA and mRNA Expression, and Carcass and Meat Quality of Resultant Offspring. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This research analyzed how maternal plane of nutrition during mid-gestation impacts growth, blood metabolites, expression of microRNA and messenger RNA in skeletal muscle, feedlot performance, and carcass characteristics of progeny. Thirty-two cows were bred to the same Angus sire and fed to either maintain a body condition score (BCS) of 5.0 to 5.5 (maintenance [MAIN]; n = 15) or to lose 1 BCS (restriction [REST]; n = 17) over an 84-d period of mid-gestation. Following the second trimester, all cows were co-mingled and fed at maintenance for the remainder of gestation. Following the 84-d treatment period, REST cows had a lower (P < 0.01) BCS than MAIN cows. At the end of the third trimester, there was no difference (P = 0.78) in BCS between the treatment groups. There was no difference (P > 0.10) between offspring in birthweight, weaning weight, average daily gain, feed efficiency, dry matter intake, carcass yield, steak quality, or in circulating levels of glucose, cortisol, insulin, or insulin-like growth factor-1. REST offspring expressed more (P < 0.05) miR-133a, miR-133b, miR-181d, miR-214, miR-424 and miR-486 at weaning than MAIN offspring. At harvest, REST offspring expressed more (P < 0.05) miR-133a and less (P < 0.01) miR-486 than MAIN offspring. REST steaks were perceived as more tender (P = 0.05) by a trained sensory panel. These results indicate that maternal nutrient restriction during mid-gestation resulting in a loss of 1 BCS has an effect on microRNA expression in the skeletal muscle but does not alter postnatal growth potential, carcass quality, or end product quality of the offspring. This suggests that moderate restriction in maternal nutrition during the second trimester, which results in a drop in BCS that can be recovered during the third trimester, should not cause alarm for producers when considering future offspring performance.
Collapse
Affiliation(s)
| | | | | | | | | | - Kerry A. Rood
- Utah State University Animal, Dairy and Veterinary Science
| | | |
Collapse
|
13
|
Comparison of MicroRNA Transcriptomes Reveals the Association between MiR-148a-3p Expression and Rumen Development in Goats. Animals (Basel) 2020; 10:ani10111951. [PMID: 33114089 PMCID: PMC7690783 DOI: 10.3390/ani10111951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary In ruminants, the rumen epithelium plays an important role in nutrient absorption, metabolism and transport. MicroRNAs (miRNAs) have been reported to regulate the proliferation of diverse epithelial cells. In this study, we profiled the miRNA transcriptomes of goat rumens at four development stages and screened for candidate miRNAs related to rumen development. MiR-148a-3p was found to be highly expressed in the rumen tissues and induced the proliferation of GES-1 cells by targeting QKI. Our findings provide some insights into the functional roles of miRNAs in rumen growth and functional development in ruminants. Abstract The rumen is an important digestive organ of ruminants. From the fetal to adult stage, the morphology, structure and function of the rumen change significantly. However, the knowledge of the intrinsic genetic regulation of these changes is still limited. We previously reported a genome-wide expression profile of miRNAs in pre-natal goat rumens. In this study, we combined and analyzed the transcriptomes of rumen miRNAs during pre-natal (E60 and E135) and post-natal (D30 and D150) stages. A total of 66 differentially expressed miRNAs (DEMs) were identified in the rumen tissues from D30 and D150 goats. Of these, 17 DEMs were consistently highly expressed in the rumens at the pre-weaning stages (E60, E135 and D30), while down-regulated at D150. Noteworthy, annotation analysis revealed that the target genes regulated by the DEMs were mainly enriched in MAPK signaling pathway, Jak-STAT signaling pathway and Ras signaling pathway. Interestingly, the expression of miR-148a-3p was significantly high in the embryonic stage and down-regulated at D150. The potential binding sites of miR-148a-3p in the 3′-UTR of QKI were predicted by the TargetScan and verified by the dual luciferase report assay. The co-localization of miR-148a-3p and QKI through in situ hybridization was observed in the rumen tissues but not in the intestinal tracts. Moreover, the expression of miR-148a-3p in the epithelium was significantly higher than that in the other layers of the rumen, suggesting that miR-148a-3p is involved in the development of the rumen epithelial cells by targeting QKI. Subsequently, miR-148a-3p inhibitor was found to induce the proliferation of GES-1 cells. Taken together, our study identified DEMs involved in the development of the rumen and provides insights into the regulation mechanism of rumen development in goats.
Collapse
|
14
|
Regulatory Roles of SREBF1 and SREBF2 in Lipid Metabolism and Deposition in Two Chinese Representative Fat-Tailed Sheep Breeds. Animals (Basel) 2020; 10:ani10081317. [PMID: 32751718 PMCID: PMC7460493 DOI: 10.3390/ani10081317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Sterol regulatory element binding proteins (SREBPs) play the crucial role in regulating the cholesterol and fatty acid metabolism. However, it is unclear whether SREBPs are involved in the regulation of lipid metabolism in fat-tailed sheep. This study reveals the expression profiles of SREBF1 and SREBF2 in liver and adipose tissues of two Chinese representative fat-tailed sheep breeds, and provides a new insight for the regulatory role of SREBP1 and SREBP2 in fat metabolism and deposition in fat-tailed sheep. Abstract Sterol regulatory element binding proteins (SREBPs) can regulate the lipid homeostasis by regulating its target genes, which are crucial for the cholesterol and fatty acid metabolism. However, the transcriptional regulation role of SREBPs in fat-tailed sheep is unclear. In this study, two Chinese representative breeds of total 80 fat-tailed sheep were employed, serum triglyceride, total cholesterol (TC), non-esterified fatty acid (NEFA), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and mRNA expressions of SREBF1 and SREBF2 in seven different adipose tissues and liver were examined in sheep at the ages of 4, 6, 8, 10, and 12 months, respectively. The subcellular localization and function of SREBP1/2 were predicted through bioinformatics approaches. The results demonstrated that serum TC and NEFA levels among breeds were significantly different, and most serum indices were dynamically altered in an age-dependent manner. The mRNA expression profiling of SREBF1 and SREBF2 are breed-specific with temporal and spatial expressions differences. Further analysis shows that SREBF1/2 transcriptional levels and tail traits are closely related. All investigations simplify that SREBF1/2 play a crucial role in lipid metabolism and deposition during growth and development of the fat-tailed sheep, which also provides a novel insight for revealing the genetic mechanism of different tail type and meat quality.
Collapse
|
15
|
Xing K, Gao M, Li X, Feng Y, Ge Y, Qi X, Wang X, Ni H, Guo Y, Sheng X. An integrated analysis of testis miRNA and mRNA transcriptome reveals important functional miRNA-targets in reproduction traits of roosters. Reprod Biol 2020; 20:433-440. [PMID: 32561231 DOI: 10.1016/j.repbio.2020.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/17/2020] [Accepted: 03/14/2020] [Indexed: 01/19/2023]
Abstract
The reproductive efficiency of roosters is an important trait in poultry production; however, the molecular mechanisms underlying this trait are not clearly understood. Here, we compared the mRNA and microRNA (miRNA) transcriptomes of testis from roosters with divergent sperm motility. A total of 302 differentially expressed genes (DEGs), including 182 upregulated genes and 120 downregulated genes, were identified in high sperm motility groups compared with low sperm motility groups. A subset of these DEGs related to steroid hormone biosynthesis and thus could be important for spermatogenesis. Additionally, we detected 13 differentially expressed miRNAs (DEMs) between two groups, and target gene prediction indicated seven of these could be associated with spermatogenesis. Based on a comprehensive analysis of these transcriptomes, miRNA-mRNA interaction networks were constructed. Six DEGs were predicted to be regulated by DEMs. Subsequently, we validated the negative regulation of family with sequence similarity 84, member A (FAM84A) by miR-215 using a dual-luciferase reporter system. These results provide new insights into the molecular profile of the testis and identify genes that may determine sperm motility in chickens.
Collapse
Affiliation(s)
- Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Mengjin Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xue Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuhang Feng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yu Ge
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
16
|
Cheng S, Wang X, Zhang Q, He Y, Zhang X, Yang L, Shi J. Comparative Transcriptome Analysis Identifying the Different Molecular Genetic Markers Related to Production Performance and Meat Quality in Longissimus Dorsi Tissues of MG × STH and STH Sheep. Genes (Basel) 2020; 11:E183. [PMID: 32050672 PMCID: PMC7074365 DOI: 10.3390/genes11020183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
Crossbred sheep have many prominent traits, such as excellent production performance and high-quality meat, when compared to local sheep breeds. However, the genetic molecular markers related to these characteristics remain unclear. The crossbred MG × STH (small-tailed Han sheep (STH) × Mongolian sheep (MG)) breed and the STH breed were selected to measure production performance and meat quality. We used 14 indexes of production performance and meat quality, which in the MG × STH population showed significant differences compared to the STH breed. Subsequently, the longissimusdorsi from the two sheep were subjected to comparative transcriptomic analyses to identify differentially expressed genes (DEGs) related to production performance and meat quality. A total of 874 DEGs were identified between the two sheep groups. A total of 110 unique DEGs related to sheep production performance and meat quality were selected as the candidate DEGs. We found 6 production-performance-related and 30 meat-quality-related DEGs through a correlation analysis, including SPARC, ACVRL1, FNDC5 and FREM1. The expression levels of 11 DEGs were validated by real-time PCR, and the results were in accordance with the results of the comparative transcriptomic and correlation analyses. These results will assist in understanding sheep heterosis and molecular marker-assisted selection.
Collapse
Affiliation(s)
- Shuru Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.Y.); (J.S.)
| | - Xueying Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Quanwei Zhang
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (X.Z.)
| | - Yuqin He
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (X.Z.)
| | - Xia Zhang
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (X.Z.)
| | - Lei Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.Y.); (J.S.)
| | - Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.Y.); (J.S.)
| |
Collapse
|
17
|
Altered miRNA and mRNA Expression in Sika Deer Skeletal Muscle with Age. Genes (Basel) 2020; 11:genes11020172. [PMID: 32041309 PMCID: PMC7073773 DOI: 10.3390/genes11020172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Studies of the gene and miRNA expression profiles associated with the postnatal late growth, development, and aging of skeletal muscle are lacking in sika deer. To understand the molecular mechanisms of the growth and development of sika deer skeletal muscle, we used de novo RNA sequencing (RNA-seq) and microRNA sequencing (miRNA-seq) analyses to determine the differentially expressed (DE) unigenes and miRNAs from skeletal muscle tissues at 1, 3, 5, and 10 years in sika deer. A total of 51,716 unigenes, 171 known miRNAs, and 60 novel miRNAs were identified based on four mRNA and small RNA libraries. A total of 2,044 unigenes and 11 miRNAs were differentially expressed between adolescence and juvenile sika deer, 1,946 unigenes and 4 miRNAs were differentially expressed between adult and adolescent sika deer, and 2,209 unigenes and 1 miRNAs were differentially expressed between aged and adult sika deer. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that DE unigenes and miRNA were mainly related to energy and substance metabolism, processes that are closely associate with the growth, development, and aging of skeletal muscle. We also constructed mRNA–mRNA and miRNA–mRNA interaction networks related to the growth, development, and aging of skeletal muscle. The results show that mRNA (Myh1, Myh2, Myh7, ACTN3, etc.) and miRNAs (miR-133a, miR-133c, miR-192, miR-151-3p, etc.) may play important roles in muscle growth and development, and mRNA (WWP1, DEK, UCP3, FUS, etc.) and miRNAs (miR-17-5p, miR-378b, miR-199a-5p, miR-7, etc.) may have key roles in muscle aging. In this study, we determined the dynamic miRNA and unigenes transcriptome in muscle tissue for the first time in sika deer. The age-dependent miRNAs and unigenes identified will offer insights into the molecular mechanism underlying muscle development, growth, and maintenance and will also provide valuable information for sika deer genetic breeding.
Collapse
|