1
|
Zuo Z, Ma G, Xie L, Yao X, Zhan S, Zhou Y. Genome-Wide Identification and Expression Analysis of the COL Gene Family in Hemerocallis citrina Baroni. Curr Issues Mol Biol 2024; 46:8550-8566. [PMID: 39194720 DOI: 10.3390/cimb46080503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Hemerocallis citrina Baroni (H. citrina) is an important specialty vegetable that is not only edible and medicinal but also has ornamental value. However, much remains unknown about the regulatory mechanisms associated with the growth, development, and flowering rhythm of this plant. CO, as a core regulatory factor in the photoperiod pathway, coordinates light and circadian clock inputs to transmit flowering signals. We identified 18 COL genes (HcCOL1-HcCOL18) in the H. citrina cultivar 'Mengzihua' and studied their chromosomal distribution, phylogenetic relationships, gene and protein structures, collinearity, and expression levels in the floral organs at four developmental stages. The results indicate that these genes can be classified into three groups based on phylogenetic analysis. The major expansion of the HcCOL gene family occurred via segmental duplication, and the Ka/Ks ratio indicated that the COL genes of Arabidopsis thaliana, Oryza sativa, Phalaenopsis equestris, and H. citrina were under purifying selection. Many cis-elements, including light response elements, abiotic stress elements, and plant hormone-inducible elements, were distributed in the promoter sequences of the HcCOL genes. Expression analysis of HcCOL genes at four floral developmental stages revealed that most of the HcCOL genes were expressed in floral organs and might be involved in the growth, development, and senescence of the floral organs of H. citrina. This study lays a foundation for the further elucidation of the function of the HcCOL gene in H. citrina and provides a theoretical basis for the molecular design breeding of H. citrina.
Collapse
Affiliation(s)
- Ziwei Zuo
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, China
| | - Guangying Ma
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, China
| | - Lupeng Xie
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, China
| | - Xingda Yao
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, China
| | - Shuxia Zhan
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, China
| | - Yuan Zhou
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, China
| |
Collapse
|
2
|
Ma H, Pei J, Zhuo J, Tang Q, Hou D, Lin X. The CONSTANS-LIKE gene PeCOL13 regulates flowering through intron-retained alternative splicing in Phyllostachys edulis. Int J Biol Macromol 2024; 274:133393. [PMID: 38917922 DOI: 10.1016/j.ijbiomac.2024.133393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Woody bamboo exhibits a unique flowering characteristic with a lengthy flowering cycle, often followed by death. In many plant species, alternative splicing (AS) is a common phenomenon involved in controlling flowering. In this study, a PeCOL13 gene in moso bamboo (Phyllostachys edulis) was characterized. It produced two isoforms: PeCOL13α and PeCOL13β, due to an intron-retained AS. The PeCOL13α expressed in the vegetative phase and the reproductive phase, but the PeCOL13β didn't express during the vegetative phase and showed only a weak expression from F1 to F3 during the reproductive phase. Overexpression of PeCOL13α in rice (Oryza sativa) resulted in a delayed heading time through inhibiting the expressions of Hd3a, OsFTL1, and Ehd1 and activating the expressions of Ghd7 and RCN1. However, the PeCOL13β-overexpressed rice didn't show any significant differences in flowering compared with wild-type (WT), and the expressions of downstream flowering genes had no notable changes. Further analysis revealed that both PeCOL13α and PeCOL13β can bind to the PeFT promoter. Meanwhile, PeCOL13α can inhibit the transcription of PeFT, but PeCOL13β showed no effect. When PeCOL13α and PeCOL13β coexist, the inhibitory effect of PeCOL13α on PeFT transcription was weakened by PeCOL13β. This study provides new insights into the mechanism of bamboo flowering research.
Collapse
Affiliation(s)
- Hongjia Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin' an 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Lin' an 311300, China
| | - Jialong Pei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin' an 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Lin' an 311300, China
| | - Juan Zhuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin' an 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Lin' an 311300, China
| | - Qingyun Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin' an 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Lin' an 311300, China
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin' an 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Lin' an 311300, China.
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin' an 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Lin' an 311300, China.
| |
Collapse
|
3
|
Fan H, Zhuo R, Wang H, Xu J, Jin K, Huang B, Qiao G. A comprehensive analysis of the floral transition in ma bamboo (Dendrocalamus latiflorus) reveals the roles of DlFTs involved in flowering. TREE PHYSIOLOGY 2022; 42:1899-1911. [PMID: 35466991 DOI: 10.1093/treephys/tpac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/17/2022] [Indexed: 05/26/2023]
Abstract
Bamboo has a unique flowering characteristics of long and unpredictable vegetative period, which differs from annual herbs and perennial woody plants. In order to understand the molecular regulatory mechanism of bamboo flowering, a comprehensive study was conducted in ma bamboo (Dendrocalamus latiflorus Munro), including morphological, physiological and transcriptiome analyses. Differentially expressed genes related to the flowering pathway were identified by comparative transcriptome analysis. DlFT1, a homologous gene of FT/Hd3a, was significantly upregulated in flowering bamboo. Direct differentiation of spikelets from calli occurred and the downstream gene AP1 was upregulated in the transgenic bamboo overexpressing DlFT1. Transgenic rice overexpressing DlFT1 showed a strong early flowering phenotype. DlFT1 and DlTFL1 could interact with DlFD, and DlTFL1 delayed flowering. It is presumed that DlTFL1 plays an antagonistic role with DlFT1 in ma bamboo. In addition, the expression of DlFT1 was regulated by DlCO1, indicating that a CO-FT regulatory module might exist in ma bamboo. These results suggest that DlFT1 is a florigen candidate gene with conservative function in promoting flowering. Interestingly, the results have shown for the first time that DlFT2 can specifically interact with E3 ubiquitin ligase WAV3, while DlFT3 transcripts are mainly nonsense splicing. These findings provide better understanding of the roles of the florigen gene in bamboo and lay a theoretical basis for regulating bamboo flowering in the future.
Collapse
Affiliation(s)
- Huijin Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Haidian district, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Daqiao Road, Fuyang District, Hangzhou 311400, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Haidian district, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Daqiao Road, Fuyang District, Hangzhou 311400, China
| | - Huiyuan Wang
- Fujian Agriculture and Forestry University, Shangxiadian Road, Cangshan district, Fuzhou 350002, China
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Haidian district, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Daqiao Road, Fuyang District, Hangzhou 311400, China
| | - Kangming Jin
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Haidian district, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Daqiao Road, Fuyang District, Hangzhou 311400, China
| | - Biyun Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Haidian district, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Daqiao Road, Fuyang District, Hangzhou 311400, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Haidian district, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Daqiao Road, Fuyang District, Hangzhou 311400, China
| |
Collapse
|
4
|
Ashraf MF, Hou D, Hussain Q, Imran M, Pei J, Ali M, Shehzad A, Anwar M, Noman A, Waseem M, Lin X. Entailing the Next-Generation Sequencing and Metabolome for Sustainable Agriculture by Improving Plant Tolerance. Int J Mol Sci 2022; 23:651. [PMID: 35054836 PMCID: PMC8775971 DOI: 10.3390/ijms23020651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Crop production is a serious challenge to provide food for the 10 billion individuals forecasted to live across the globe in 2050. The scientists' emphasize establishing an equilibrium among diversity and quality of crops by enhancing yield to fulfill the increasing demand for food supply sustainably. The exploitation of genetic resources using genomics and metabolomics strategies can help generate resilient plants against stressors in the future. The innovation of the next-generation sequencing (NGS) strategies laid the foundation to unveil various plants' genetic potential and help us to understand the domestication process to unmask the genetic potential among wild-type plants to utilize for crop improvement. Nowadays, NGS is generating massive genomic resources using wild-type and domesticated plants grown under normal and harsh environments to explore the stress regulatory factors and determine the key metabolites. Improved food nutritional value is also the key to eradicating malnutrition problems around the globe, which could be attained by employing the knowledge gained through NGS and metabolomics to achieve suitability in crop yield. Advanced technologies can further enhance our understanding in defining the strategy to obtain a specific phenotype of a crop. Integration among bioinformatic tools and molecular techniques, such as marker-assisted, QTLs mapping, creation of reference genome, de novo genome assembly, pan- and/or super-pan-genomes, etc., will boost breeding programs. The current article provides sequential progress in NGS technologies, a broad application of NGS, enhancement of genetic manipulation resources, and understanding the crop response to stress by producing plant metabolites. The NGS and metabolomics utilization in generating stress-tolerant plants/crops without deteriorating a natural ecosystem is considered a sustainable way to improve agriculture production. This highlighted knowledge also provides useful research that explores the suitable resources for agriculture sustainability.
Collapse
Affiliation(s)
- Muhammad Furqan Ashraf
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Muhammad Imran
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Jialong Pei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Mohsin Ali
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Aamar Shehzad
- Maize Research Station, AARI, Faisalabad 38000, Pakistan;
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Muhammad Waseem
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| |
Collapse
|
5
|
Pan G, Li Z, Yin M, Huang S, Tao J, Chen A, Li J, Tang H, Chang L, Deng Y, Li D, Zhao L. Genome-wide identification, expression, and sequence analysis of CONSTANS-like gene family in cannabis reveals a potential role in plant flowering time regulation. BMC PLANT BIOLOGY 2021; 21:142. [PMID: 33731002 PMCID: PMC7972231 DOI: 10.1186/s12870-021-02913-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cannabis, an important industrial crop, has a high sensitivity to photoperiods. The flowering time of cannabis is one of its important agronomic traits, and has a significant effect on its yield and quality. The CONSTANS-like (COL) gene plays a key role in the regulation of flowering in this plant. However, the specific roles of the COL gene family in cannabis are still unknown. RESULTS In this study, 13 CsCOL genes were identified in the cannabis genome. Phylogenetic analysis implied that the CsCOL proteins were divided into three subgroups, and each subgroup included conserved intron/exon structures and motifs. Chromosome distribution analysis showed that 13 CsCOL genes were unevenly distributed on 7 chromosomes, with chromosome 10 having the most CsCOL members. Collinearity analysis showed that two syntenic gene pairs of CsCOL4 and CsCOL11 were found in both rice and Gossypium raimondii. Of the 13 CsCOL genes, CsCOL6 and CsCOL12 were a pair of tandem duplicated genes, whereas CsCOL8 and CsCOL11 may have resulted from segmental duplication. Furthermore, tissue-specific expression showed that 10 CsCOL genes were preferentially expressed in the leaves, 1 CsCOL in the stem, and 2 CsCOL in the female flower. Most CsCOL exhibited a diurnal oscillation pattern under different light treatment. Additionally, sequence analysis showed that CsCOL3 and CsCOL7 exhibited amino acid differences among the early-flowering and late flowering cultivars. CONCLUSION This study provided insight into the potential functions of CsCOL genes, and highlighted their roles in the regulation of flowering time in cannabis. Our results laid a foundation for the further elucidation of the functions of COL genes in cannabis.
Collapse
Affiliation(s)
- Gen Pan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
- Key Laboratory of the Biology and Process of Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Zheng Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Ming Yin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Siqi Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
- Key Laboratory of the Biology and Process of Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Jie Tao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Anguo Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
- Key Laboratory of the Biology and Process of Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Jianjun Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
- Key Laboratory of the Biology and Process of Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Huijuan Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
- Key Laboratory of the Biology and Process of Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Li Chang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
- Key Laboratory of the Biology and Process of Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Yong Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
- Key Laboratory of the Biology and Process of Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Defang Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
- Key Laboratory of the Biology and Process of Bast Fiber Crops, Ministry of Agriculture, Changsha, China.
| | - Lining Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
- Key Laboratory of the Biology and Process of Bast Fiber Crops, Ministry of Agriculture, Changsha, China.
| |
Collapse
|