1
|
Li S, Chen J, Zhou W, Liu Y, Zhang D, Yang Q, Feng Y, Cha C, Li L, He G, Li J. To Develop Biomarkers for Diabetic Nephropathy Based on Genes Related to Fibrosis and Propionate Metabolism and Their Functional Validation. J Diabetes Res 2024; 2024:9066326. [PMID: 39444490 PMCID: PMC11498995 DOI: 10.1155/2024/9066326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/18/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Propionate metabolism is important in the development of diabetes, and fibrosis plays an important role in diabetic nephropathy (DN). However, there are no studies on biomarkers related to fibrosis and propionate metabolism in DN. Hence, the current research is aimed at evaluating biomarkers associated with fibrosis and propionate metabolism and to explore their effect on DN progression. The GSE96804 (DN : control = 41 : 20) and GSE104948 (DN : control = 7 : 18) DN-related datasets and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were acquired from the public database. First, DN differentially expressed genes (DN-DEGs) between the DN and control samples were sifted out via differential expression analysis. The PMRG scores of the DN samples were calculated based on PMRGs. The samples were divided into the high and low PMRG score groups according to the median scores. The PM-DEGs between the two groups were screened out. Second, the intersection of DN-DEGs, PM-DEGs, and FRGs was taken to yield intersected genes. Random forest (RF) and recursive feature elimination (RFE) analyses of the intersected genes were performed to sift out biomarkers. Then, single gene set enrichment analysis was conducted. Finally, immunoinfiltrative analysis was performed, and the transcription factor (TF)-microRNA (miRNA)-mRNA regulatory network and the drug-gene interaction network were constructed. There were 2633 DN-DEGs between the DN and control samples and 515 PM-DEGs between the high and low PMRG score groups. In total, 10 intersected genes were gained after taking the intersection of DN-DEGs, PM-DEGs, and FRGs. Seven biomarkers, namely, SLC37A4, ACOX2, GPD1, angiotensin-converting enzyme 2 (ACE2), SLC9A3, AGT, and PLG, were acquired via RF and RFE analyses, and they were found to be involved in various mechanisms such as glomerulus development, fatty acid metabolism, and peroxisome. The seven biomarkers were positively correlated with neutrophils. Moreover, 8 TFs, 60 miRNAs, and 7 mRNAs formed the TF-miRNA-mRNA regulatory network, including USF1-hsa-mir-1296-5p-AGT and HIF1A-hsa-mir-449a-5p-ACE2. The drug-gene network contained UROKINASE-PLG, ATENOLOL-AGT, and other interaction relationship pairs. Via bioinformatic analyses, the risk of fibrosis and propionate metabolism-related biomarkers in DN were explored, thereby providing novel ideas for research related to DN diagnosis and treatment.
Collapse
Affiliation(s)
- Sha Li
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University 650032, Kunming, China
| | - Jingshan Chen
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University 650032, Kunming, China
| | - Wenjing Zhou
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University 650032, Kunming, China
| | - Yonglan Liu
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University 650032, Kunming, China
| | - Di Zhang
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University 650032, Kunming, China
| | - Qian Yang
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University 650032, Kunming, China
| | - Yuerong Feng
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University 650032, Kunming, China
| | - Chunli Cha
- Department of Nephrology, The Second People's Hospital of Yunnan Province 650021, Kunming, China
| | - Li Li
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University 650032, Kunming, China
| | - Guoyong He
- Department of Nephrology, Kunming First People's Hospital 650034, Kunming, China
| | - Jun Li
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University 650032, Kunming, China
| |
Collapse
|
2
|
Wang J, Wang X, Ma T, Xie Y. Research progress on Alpinia oxyphylla in the treatment of diabetic nephropathy. Front Pharmacol 2024; 15:1390672. [PMID: 38948461 PMCID: PMC11211572 DOI: 10.3389/fphar.2024.1390672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/13/2024] [Indexed: 07/02/2024] Open
Abstract
Diabetic nephropathy (DN) constitutes a major microvascular complication of diabetes and is a primary cause of mortality in diabetic individuals. With the global rise in diabetes, DN has become an urgent health issue. Currently, there is no definitive cure for DN. Alpinia oxyphylla, a Chinese herbal medicine traditionally used, exhibits a wide range of pharmacological effects and is frequently used in the prevention and management of DN. This paper offers an extensive review of the biological mechanisms by which A. oxyphylla delivers therapeutic advantages in DN management. These mechanisms include activating podocyte autophagy, regulating non-coding RNA, modulating gut microbiota, alleviating lipotoxicity, counteracting oxidative stress, and diminishing inflammatory responses, underscoring the therapeutic potential of A. oxyphylla in DN treatment.
Collapse
Affiliation(s)
- Jing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianpeng Ma
- Hainan Medical University, Haikou, Hainan, China
| | - Yiqiang Xie
- Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
3
|
Wan X, Liao J, Lai H, Zhang S, Cui J, Chen C. Roles of microRNA-192 in diabetic nephropathy: the clinical applications and mechanisms of action. Front Endocrinol (Lausanne) 2023; 14:1179161. [PMID: 37396169 PMCID: PMC10309560 DOI: 10.3389/fendo.2023.1179161] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most common and intractable microvascular complications of diabetes worldwide, serving as the main cause of terminal renal disease. Due to the lack of early specific symptoms and diagnostic markers, DN severely threatens the sufferer's life. MicroRNA-192 (miR-192) was early identified in human renal cortical tissue and stored and excreted in urine as microvesicles. MiR-192 was found to be involved in the development of DN. For the first time, the present review summarized all the current evidence on the topic of the roles of miR-192 in DN. Finally, 28 studies (ten clinical trials and eighteen experimental studies) were eligible for thorough reviewing. Most of the clinical trials (7/10, 70%) indicated miR-192 might be a protective factor for DN development and progression, while the majority of experimental studies (14/18, 78%) suggested miR-192 might be a pathogenic factor for DN. Mechanistically, miR-192 interacts with various direct targeted proteins (i.e., ZEB1, ZEB2, SIP1, GLP1R, and Egr1) and signaling cascades (i.e., SMAD/TGF-β and PTEN/PI3K/AKT), together contribute to the pathogenesis of DN through epithelial-to-mesenchymal transition (EMT), extracellular matrix deposition, and fibrosis formation. The current review highlights the dual role of miR-192 in the development of DN. Low serum miR-192 expression could be applied for the early prediction of DN (the early stage of DN), while the high miR-192 level in renal tissues and urine may imply the progression of DN (the late stage of DN). Further investigations are still warranted to illustrate this inconsistent phenomenon, which may facilitate promoting the therapeutic applications of miR-192 in predicting and treating DN.
Collapse
Affiliation(s)
- Xiaoqing Wan
- Department of Nephrology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Hongting Lai
- Clinical Medical College, Tianjin Medical University, Tianjin, China
| | - Shilong Zhang
- Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianling Cui
- Department of Nephrology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chunyan Chen
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| |
Collapse
|
4
|
Zhang Y, Lv X, Chen F, Fan Q, Liu Y, Wan Z, Nibaruta J, Lv J, Han X, Wu L, Wang H, Leng Y. Role of microRNAs in programmed cell death in renal diseases: A review. Medicine (Baltimore) 2023; 102:e33453. [PMID: 37058073 PMCID: PMC10101263 DOI: 10.1097/md.0000000000033453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression involving kidney morphogenesis and cell proliferation, apoptosis, differentiation, migration, invasion, immune evasion, and extracellular matrix remodeling. Programmed cell death (PCD) is mediated and regulated by specific genes and a wealth of miRNAs, which participate in various pathological processes. Dysregulation of miRNAs can disrupt renal development and induce the onset and progression of various renal diseases. An in-depth understanding of how miRNAs regulate renal development and diseases is indispensable to comprehending how they can be used in new diagnostic and therapeutic approaches. However, the mechanisms are still insufficiently investigated. Hence, we review the current roles of miRNA-related signaling pathways and recent advances in PCD research and aim to display the potential crosstalk between miRNAs and PCD. The prospects of miRNAs as novel biomarkers and therapeutic targets are also described, which might provide some novel ideas for further studies.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Xinghua Lv
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Feng Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Qian Fan
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Tianjin, China
- Nankai Eye Institute, Nankai University, Tianjin, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yongqiang Liu
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Zhanhai Wan
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Janvier Nibaruta
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Jipeng Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Xuena Han
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Lin Wu
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hao Wang
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yufang Leng
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| |
Collapse
|
5
|
Zhao Y, Li D, Zhou P, Zhao Y, Kuang J. microRNA-29b-3p attenuates diabetic nephropathy in mice by modifying EZH2. Hormones (Athens) 2023; 22:223-233. [PMID: 36692688 DOI: 10.1007/s42000-022-00426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/30/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Diabetic nephropathy (DN) is the leading cause of end-stage renal disease around the world. This study investigated the role of microRNA (miR)-29b-3p in DN and the mechanism of the miR-29b-3p/EZH2 axis in DN. METHODS Peripheral blood samples of DN patients were collected and miR-29b-3p and EZH2 expression levels were evaluated using RT-qPCR. DN mouse models were successfully established, and then treated with miR-29b-3p overexpression or EZH2 silence. IL-1β, IL-6, and TNF-α levels were assessed by ELISA. Blood glucose, serum creatinine (Scr), 24-h urine volume, 24-h urine protein, and blood urea nitrogen (BUN) levels were examined by automatic biochemical analyzer detection. HE staining was performed to observe the renal histopathology, and TUNEL staining was implemented to test apoptosis in renal tissues. The binding relationship between miR-29b-3p and EZH2 was validated by using a bioinformatics website and dual luciferase reporter gene assay. RESULTS miR-29b-3p was lowly expressed, and EZH2 was highly expressed in patients with DN. Overexpressing miR-29b-3p or silencing EZH2 attenuated renal dysfunction, suppressed inflammation and apoptosis, and relieved renal injuries in mice with DN. miR-29b-3p inhibited EZH2, and miR-29b-3p overexpression mitigated renal injuries in DN mice by repressing EZH2. CONCLUSION miR-29b-3p suppresses EZH2 expression thereby inhibiting the progression of DN in mice.
Collapse
Affiliation(s)
- Yurong Zhao
- Department of Endocrinology, the Fourth People's Hospital of Shenyang, Shenyang, 110000, Liaoning, China
| | - Dandan Li
- Department of Endocrinology, the Fourth People's Hospital of Shenyang, Shenyang, 110000, Liaoning, China
| | - Ping Zhou
- Department of Anesthesiology, Suizhou Maternal and Child Health Hospital, Suizhou, 441300, Hubei, China
| | - Yujie Zhao
- Shenzhen Yuce Biological Technology Company, Shenzhen, 518172, Guangdong, China
| | - Jinsong Kuang
- Department of Endocrinology, the Fourth People's Hospital of Shenyang, Shenyang, 110000, Liaoning, China.
| |
Collapse
|
6
|
Mansouri E, Orazizadeh M, Mard SA, Gorji AV, Rashno M, Fakhredini F. Therapeutic Effect of Kidney Tubular Cells-Derived Conditioned Medium on the Expression of MicroRNA-377, MicroRNA-29a, Aquapurin-1, Biochemical, and Histopathological Parameters Following Diabetic Nephropathy Injury in Rats. Adv Biomed Res 2022; 11:119. [PMID: 36798914 PMCID: PMC9926036 DOI: 10.4103/abr.abr_375_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 12/28/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a critical complication of diabetes mellitus. This study evaluates whether administration of conditioned medium from kidney tubular cells (KTCs-CM) has the ability to be efficacious as an alternative to cell-based therapy for DN. Materials and Methods CM of rabbit kidney tubular cells (RK13; KTCs) has been collected and after centrifugation, filtered with 0.2 filters. Four groups of rats have been utilized, including control, DN, DN treated with CM, and sham group. After diabetes induction by streptozotocin (50 mg/kg body weight) in rats, 0.8 ml of the CM was injected to each rat three times per day for 3 consecutive days. Then, 24-h urine protein, blood urea nitrogen (BUN), and serum creatinine (Scr) have been measured through detection kits. The histopathological effects of CM on kidneys were evaluated by periodic acid-Schiff staining and the expression of microRNAs (miRNAs) 29a and 377 by using the real-time polymerase chain reaction. The expression of aquapurin-1 (AQP1) protein was also examined by Western blotting. Results Intravenous injections of KTCs-CM significantly reduced the urine volume, protein 24-h, BUN, and Scr, decreased the miRNA-377, and increased miRNA-29a and AQP1 in DN treated with CM rats. Conclusion KTCs-CM may have the potential to prevent kidney injury from diabetes by regulating the microRNAs related to DN and improving the expression of AQP1.
Collapse
Affiliation(s)
- Esrafil Mansouri
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Physiology Research Center, Research Institute for Infectious Diseases of Digestive System, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Armita Valizadeh Gorji
- Bone Marrow Transplantation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Immunology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereshtesadat Fakhredini
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Address for correspondence: Dr. Fereshtesadat Fakhredini, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. E-mail:
| |
Collapse
|
7
|
Ghaffari T, Moradi N, Chamani E, Ebadi Z, Fadaei R, Alizadeh-Fanalou S, Yarahmadi S, Fallah S. Captopril and Spironolactone Can Attenuate Diabetic Nephropathy in Wistar Rats by Targeting ABCA1 and microRNA-33. Curr Pharm Des 2022; 28:1367-1372. [DOI: 10.2174/1381612828666220401143249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Background:
Nephropathy diabetes is one of the important causes of death and a more prevalent cause of end-stage renal disease.
Objective:
The present study investigated the effect of applying spironolactone and captopril and their combination on some renal performance indices and cholesterol-efflux-related gene expression in nephropathy diabetic rats.
Methods:
Intraperitoneal injection of streptozotocin was used to induce diabetes in rats. FBS, creatinine, and BUN were assayed using the calorimetry technique; also, urine microalbumin was assayed by ELISA. Hepatic gene expressions of ABCA1, ABCG1, and miR-33 were evaluated by the real-time PCR method.
Results:
FBS levels in the captopril-treated group were significantly decreased compared with the untreated diabetic group. BUN levels of treated groups with captopril and a combination of captopril + spironolactone were significantly increased. GFR of both treated diabetic groups with captopril and spironolactone was significantly lower than an untreated diabetic group. ABCA1 gene expression in hepatic cells of the combination of spironolactone + captopril treated group was significantly increased compared to other treated and untreated diabetic groups. The hepatic expression of the ABCG1 gene in the treated and untreated diabetic groups was significantly lower than in the control group. Treatment of the diabetic group with only combination therapy decreased the hepatic gene expression of miR-33 significantly.
Conclusion:
Obtained results suggest that S+C combination therapy can improve nephropathy and diabetes disorders by targeting the ABCA1 and miR-33 gene expression. It is suggested miR-33 and ABCA1 genes evaluation could be a new therapeutic strategy for nephropathy diabetes remediation.
Collapse
Affiliation(s)
- Tina Ghaffari
- Department of Biochemistry and Nutrition, School of Medicine Iran University of Medical Sciences
| | - Nariman Moradi
- Department of Clinical Biochemistry, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Elham Chamani
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Ebadi
- Department of Biochemistry and Nutrition, School of Medicine Iran University of Medical Sciences
| | - Reza Fadaei
- Sleep Disorders Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Biochemistry and Nutrition, School of Medicine Iran University of Medical Sciences
| | - Sahar Yarahmadi
- Department of Biochemistry and Nutrition, School of Medicine Iran University of Medical Sciences
| | - Soudabeh Fallah
- Department of Biochemistry and Nutrition, School of Medicine Iran University of Medical Sciences
| |
Collapse
|
8
|
Liu Q, Wang M, Xu T, Liang W, Yang F. Significance of serum miR-29a in the occurrence and progression of diabetic nephropathy: A cross-sectional study. J Clin Lab Anal 2021; 36:e24210. [PMID: 34964177 PMCID: PMC8842137 DOI: 10.1002/jcla.24210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN), a common microvascular complication of type 2 diabetes mellitus (T2DM), is an important factor causing chronic kidney disease. However, the relationship between miR-29a and DN remains unknown. Therefore, a cross-sectional study was conducted to identify a potential molecular biomarker for DN prevention and management by detecting the serum miR-29a levels. METHODS The serum miR-29a levels were measured in 360 subjects (180 T2DM patients and 180 healthy controls) using quantitative reverse transcription PCR (qRT-PCR), and other conventional indicators were measured and analysed. A binary logistic regression was used to evaluate the DN risk factors; a receiver operating characteristic (ROC) curve was applied to analyse the diagnostic efficacy of miR-29a for DN, and a Spearman's rank correlation analysis was used to evaluate the correlation between serum miR-29a and cystatin C. RESULTS The serum miR-29 levels in the T2DM patients were higher than those in the healthy subjects and significantly increased with the progression of DN (p < 0.05). Serum miR-29a and cystatin C are independent predictors of the occurrence of DN. Compared with a single indicator, the combination of serum miR-29a and cystatin C has better DN diagnostic performance. In addition, the serum miR-29a levels were positively correlated with cystatin C in the patients with DN (r = 0.521, p < 0.001). CONCLUSION The expression of serum miR-29a was significantly associated with the occurrence and progression of DN and is expected to become a potential biomarker for the diagnosis of DN.
Collapse
Affiliation(s)
- Qian Liu
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, China.,Department of Laboratory Medicine, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Menglin Wang
- Department of Laboratory Medicine, Suqian First Hospital, Suqian, China
| | - Tongdao Xu
- Department of Endocrinology, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Wei Liang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, China.,Department of Laboratory Medicine, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Fumeng Yang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, China.,Department of Laboratory Medicine, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| |
Collapse
|
9
|
Zhang Y, Cai Y, Zhang H, Zhang J, Zeng Y, Fan C, Zou S, Wu C, Fang S, Li P, Lin X, Wang L, Guan M. Brown adipose tissue transplantation ameliorates diabetic nephropathy through the miR-30b pathway by targeting Runx1. Metabolism 2021; 125:154916. [PMID: 34666067 DOI: 10.1016/j.metabol.2021.154916] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Adipose tissue is a major source of circulating microRNAs (miRNAs) that can regulate target genes in distant organs. However, the role of brown adipose tissue (BAT) in diabetic kidney disease (DKD) is still unknown. We studied the original BAT miR-30b targeting two key fibrotic regulators, Runt-related transcription factor 1 (Runx1) and snail family zinc finger 1 (Snail1), to combat DKD. METHODS First, we transplanted healthy BAT from normal mouse donors into diabetic mice (induced by a high-fat diet and streptozotocin injection). In vitro, we observed extracellular vesicles (EVs) secreted from brown adipocytes. AgomiR-30b was directly administered to the BAT of diabetic mice twice weekly for 4 consecutive weeks. Next, the role of Runx1 in DKD was determined by using siRUNX1 or pCMV-RUNX1 in HK-2 cells and in diabetic mice treated with AAV9-U6-shRunx1 or AAV9-EF1a-Runx1. RESULTS BAT transplantation reactivated endogenous BAT activity in diabetic mice, increased circulating miR-30b levels and significantly ameliorated DKD. In TGFβ1-treated HK-2 cells, miR-30b expression was significantly suppressed. miR-30b overexpression markedly decreased fibronectin and downregulated Runx1 and Snail1 expression, while silencing of miR-30b had the opposite effects. Next, Runx1 knockdown and overexpression mimicked the above phenotype of miR-30b mimics and inhibitors, respectively, both in vitro and in vivo. Moreover, Runx1 promoted TGFβ1-induced fibrosis by upregulating the PI3K pathway. CONCLUSION BAT-derived miRNAs might be a promising target for kidney protection in diabetes mellitus.
Collapse
Affiliation(s)
- Yudan Zhang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yingying Cai
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Birth Control, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Hongbin Zhang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jiajun Zhang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Diagnostic Radiology, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, Guangdong 518116, China
| | - Yanmei Zeng
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Cunxia Fan
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Endocrinology & Metabolism, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Shaozhou Zou
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Endocrinology & Metabolism, TungWah Hospital, Dongguan, Guangdong 523111, China
| | - Chunyan Wu
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shu Fang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ping Li
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Xiaochun Lin
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ling Wang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Meiping Guan
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
10
|
Anti-Inflammatory Activities of Captopril and Diuretics on Macrophage Activity in Mouse Humoral Immune Response. Int J Mol Sci 2021; 22:ijms222111374. [PMID: 34768805 PMCID: PMC8584063 DOI: 10.3390/ijms222111374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022] Open
Abstract
Hypertension is accompanied by the over-activation of macrophages. Diuretics administered alone or in combination with hypotensive drugs may have immunomodulatory effects. Thus, the influence of tested drugs on mouse macrophage-mediated humoral immunity was investigated. Mice were treated intraperitoneally with captopril (5 mg/kg) with or without hydrochlorothiazide (10 mg/kg) or furosemide (5 mg/kg) by 8 days. Mineral oil-induced peritoneal macrophages were harvested to assess the generation of cytokines in ELISA, and the expression of surface markers was analyzed cytometrically. Macrophages were also pulsed with sheep red blood cells (SRBC) and transferred to naive mice for evaluation of their ability to induce a humoral immune response. Tested drugs increase the expression of surface markers important for the antigen phagocytosis and presentation. SRBC-pulsed macrophages from mice treated with captopril combined with diuretics increased the secretion of antigen-specific antibodies by recipient B cells, while macrophages of mice treated with hydrochlorothiazide or furosemide with captopril increased the number of antigen-specific B cells. Tested drugs alter the macrophage secretory profile in favor of anti-inflammatory cytokines. Our results showed that diuretics with or without captopril modulate the humoral response by affecting the function of macrophages, which has significant translational potential in assessing the safety of antihypertensive therapy.
Collapse
|
11
|
Gu Z, Fang L, Ma P. The angiotensin-converting enzyme inhibitor, captopril, suppressed hepatic stellate cell activation via NF-kappaB or wnt3α/β-catenin pathway. Bioengineered 2021; 12:8370-8377. [PMID: 34607529 PMCID: PMC8806896 DOI: 10.1080/21655979.2021.1987091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Activation of hepatic stellate cells (HSC) is associated with hepatic fibrogenesis, which is one of complications of diabetes mellitus. Captopril possesses potent anti-inflammation, oxidative stress and fibrosis effects. However, the specific molecular mechanism of captopril in high glucose (HG)-induced hepatic stellate cells has not been elucidated. Following the treatment of HG or captopril treatment for rat hepatic stellate cells (HSC-T6), cell activities were detected by Cell Counting Kit-8 (CCK8) assay. Reactive oxygen species (ROS) levels were determined by ROS staining. The expression of inflammation-related proteins (Interleukin (IL)-1β, IL-6 and IL-8) and fibrosis-related proteins (fibronectin (FN), collagen I, collagen III, collagen IV, matrix metallopeptidase (MMP-2 and MMP-9) were determined by Western blot. Captopril significantly decreased HSC-T6 cell viability induced by HG in a dose-dependent manner, as well as decreased levels of malondialdehyde (MDA), ROS, pro-inflammatory markers and fibrosis-related proteins, while upregulated superoxide dismutase (SOD) activities. We further found that captopril decreased the ratio of p-IκBα/IκBα and the ratio of p-p65/p65. Intriguing, phorbol myristate acetate (PMA) or LiCl was able to significantly reverse the captopril-induced alteration of oxidative stress-, inflammation- and fibrosis-marker levels. In conclusion, in HG-stimulated HSC-T6 cells, captopril displayed a potent ability to inhibit oxidative stress, inflammation and hepatic fibrogenesis via NF-kappaB or wnt3α/β-catenin. These results demonstrated the mechanism of captopril as well as the role of the NF-kappaB or wnt3α/β-catenin on HSC-T6 activation induced by HG.
Collapse
Affiliation(s)
- Zhaodi Gu
- Internal Medicine Department, Shaoxing Yuecheng People's Hospital, Shaoxing City, Zhejiang Province, China
| | - Linjun Fang
- Internal Medicine Department, Shaoxing Yuecheng People's Hospital, Shaoxing City, Zhejiang Province, China
| | - Peijun Ma
- Internal Medicine Department, Shaoxing Yuecheng People's Hospital, Shaoxing City, Zhejiang Province, China
| |
Collapse
|
12
|
Jia Z, Wang K, Zhang Y, Duan Y, Xiao K, Liu S, Ding X. Icariin Ameliorates Diabetic Renal Tubulointerstitial Fibrosis by Restoring Autophagy via Regulation of the miR-192-5p/GLP-1R Pathway. Front Pharmacol 2021; 12:720387. [PMID: 34349660 PMCID: PMC8326523 DOI: 10.3389/fphar.2021.720387] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022] Open
Abstract
Tubulointerstitial fibrosis is one of the most common pathological features of diabetic nephropathy. Autophagy, an intracellular mechanism to remove damaged or dysfunctional cell parts and maintain metabolic homeostasis, is inhibited in diabetic neuropathy. Icariin is a traditional Chinese medicine extract known for nourishing the kidney and reinforcing Yang. In this study, we investigated the effects and mechanism of Icariin on renal function, autophagy, and fibrosis in type 2 diabetic nephropathic rats and in high-glucose-incubated human renal tubular epithelial cells and rat renal fibroblasts (in vitro). Icariin improved diabetes, renal function, restored autophagy, and alleviated fibrosis in type 2 diabetic neuropathic rats and in vitro. After we applied autophagy-related gene 5-small interfering RNA, we found that fibrosis improvement by Icariin was related to autophagy restoration. By detecting serum sex hormone levels, and using dihydrotestosterone, siRNA for androgen receptor, and the androgen receptor antagonist Apalutamide (ARN-509), we found that Icariin had an androgen-like effect and restored autophagy and reduced fibrosis by regulating the androgen receptor. In addition, miR-192-5p levels were increased under high glucose but reduced after dihydrotestosterone and Icariin treatment. Furthermore, dihydrotestosterone and Icariin inhibited miR-192-5p overexpression-induced fibrosis production and autophagy limitation. Glucagon-like peptide-1 receptor (GLP-1R) was downregulated by high glucose and overexpression of miR-192-5p and could be restored by dihydrotestosterone and Icariin. By using ARN-509, we found that Icariin increased GLP-1R expression by regulating the androgen receptor. GLP-1R-siRNA transfection weakened the effects of Icariin on autophagy and fibrosis. These findings indicate that Icariin alleviates tubulointerstitial fibrosis by restoring autophagy through the miR-192-5p/GLP-1R pathway and is a novel therapeutic option for diabetic fibrosis.
Collapse
Affiliation(s)
- Zhirong Jia
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kaiwei Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yameng Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yalei Duan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kang Xiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuo Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
13
|
Diagnostic and Prognostic Role of miR-192 in Different Cancers: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8851035. [PMID: 33614788 PMCID: PMC7878092 DOI: 10.1155/2021/8851035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Introduction It has been shown that miR-192 is abnormally expressed in a variety of cancer types and participates in different kinds of signaling pathways. The role of miR-192 in the diagnosis and prognosis of cancer has not been verified. This article is aimed at exploring the diagnostic and prognostic value of miR-192 through a systematic review and meta-analysis. Methods A systematic search was performed through PubMed, Embase, Web of Science, and Cochrane Library databases up to June 16, 2020. A total of 16 studies were enrolled in the meta-analyses, of which 11 articles were used for diagnostic meta-analysis and 5 articles were used for prognostic meta-analysis. The values of sensitivity and specificity using miR-192 expression as a diagnostic tool were pooled in the diagnostic meta-analysis. The hazard ratios (HRs) of overall survival (OS) with 95 confidence intervals (CIs) were extracted from the studies, and pooled HRs were evaluated in the prognostic meta-analysis. Eleven studies including 667 cancer patients and 514 controls met the eligibility criteria for the diagnostic meta-analysis. Five studies including 166 patients with high miR-192 expression and 236 patients with low miR-192 expression met the eligibility criteria for the prognostic meta-analysis. Results The overall diagnostic accuracy was as follows: sensitivity 0.79 (95%CI = 0.75-0.82), specificity 0.74 (95%CI = 0.64-0.82), positive likelihood ratio 3.03 (95%CI = 2.11-4.34), negative likelihood ratio 0.29 (95%CI = 0.23-0.37), diagnostic odds ratio 10.50 (95%CI = 5.89-18.73), and area under the curve ratio (AUC) 0.82 (95%CI = 0.78-0.85). The overall prognostic analysis showed that high expression of miR-192 in patients was associated with positive survival (HR = 0.62, 95%CI : 0.41-0.93, p = 0.020). Conclusion Our results revealed that miR-192 was a potential biomarker with good sensitivity and specificity in cancers. Moreover, highly expressed miR-192 predicted a good prognosis for patients.
Collapse
|
14
|
Mojadami S, Ahangarpour A, Mard SA, Khorsandi L. Diabetic nephropathy induced by methylglyoxal: gallic acid regulates kidney microRNAs and glyoxalase1-Nrf2 in male mice. Arch Physiol Biochem 2021; 129:655-662. [PMID: 33460343 DOI: 10.1080/13813455.2020.1857775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Methylglyoxal (MG) has been reported to be a toxic by-product of glycolysis and intracellular stressor compound. This study investigated the effects of gallic acid (GA) against diabetic nephropathy (DN) induced by MG in male mice. METHODS DN was induced by methylglyoxal (600 mg/kg/day, p.o.) treated for 28 consecutive days. The animals received GA (30 mg/kg/day, p.o.) and metformin (MT) (150 mg/kg/day, p.o.) for 7 consecutive days after diabetes induction. Biochemical assays, antioxidant evaluation, microRNAs associated with fibrosis, endoplasmic reticulum stress, and histopathological analysis were examined. RESULTS MG increased malondialdehyde, albuminuria, Nrf2, miR-192 and miR-204 expression in diabetic groups and GA decreased them. Superoxide dismutase, catalase, glyoxalase1, and miR-29a expression decreased in diabetic groups and increased in treatment with GA. CONCLUSION Our results revealed that GA has improved DN induced by MG via amelioration of biochemical indices, histopathological aspects, oxidative stress and microRNAs associated with endoplasmic reticulum stress and fibrosis.
Collapse
Affiliation(s)
- Shahnaz Mojadami
- Student Research Committee, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Department of Physiology, School of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Physiology Research Center, Alimentary Tract Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, School of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Patel V, Joharapurkar A, Jain M. Role of mineralocorticoid receptor antagonists in kidney diseases. Drug Dev Res 2020; 82:341-363. [PMID: 33179798 DOI: 10.1002/ddr.21760] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Mineralocorticoid receptor (MR) antagonists, for example, spironolactone and eplerenone, are in clinical use to treat hypertension. Increasing evidence suggests that mineralocorticoid receptor activation causes the pathogenesis and progression of chronic kidney disease. Aldosterone-induced MR activation increases inflammation, fibrosis, and oxidative stress in the kidney. MR antagonists (MRAs) have demonstrated therapeutic actions in chronic kidney disease (CKD), diabetic nephropathy (DN), renal fibrosis, and drug-induced renal injury in preclinical and clinical studies. We have summarized and discussed these studies in this review. The nonsteroidal MRA, esaxerenone, recently received approval for the treatment of hypertension. It has also shown a positive therapeutic effect in phase 3 clinical trials in patients with DN. Other nonsteroidal MRA such as apararenone, finerenone, AZD9977, and LY2623091 are in different clinical trials in patients with hypertension suffering from renal or hepatic fibrotic diseases. Hyperkalemia associated with MRA therapy has frequently led to the discontinuation of the treatment. The new generation nonsteroidal MRAs like esaxerenone are less likely to cause hyperkalemia at therapeutic doses. It appears that the nonsteroidal MRAs can provide optimum therapeutic benefit for patients suffering from kidney diseases.
Collapse
Affiliation(s)
- Vishal Patel
- Zydus Research Centre, Cadila Healthcare Limited, Ahmedabad, India
| | | | - Mukul Jain
- Zydus Research Centre, Cadila Healthcare Limited, Ahmedabad, India
| |
Collapse
|
16
|
Bai X, Luo Q, Tan K, Guo L. Diagnostic value of VDBP and miR-155-5p in diabetic nephropathy and the correlation with urinary microalbumin. Exp Ther Med 2020; 20:86. [PMID: 32968443 PMCID: PMC7500046 DOI: 10.3892/etm.2020.9214] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
This study explored the diagnostic and therapeutic significance of vitamin D binding protein (VDBP) and miR-155-5p for diabetic nephropathy and the correlation with urinary microalbumin. A total of 145 patients with type 2 diabetes who attended the Hwamei hospital were selected as research objects and assigned to diabetic nephropathy group (DN group) and diabetes group according to whether they suffered from diabetic nephropathy (DN). The expression levels of urine VDBP and serum miR-155-5p in the two groups were detected, and the correlation between urinary microalbumin (mAlb), serum cystatin C (Cys C) and 24-h urinary protein was analyzed. The predictive value of single and joint detection of urinary VDBP and serum miR-155-5p for DN onset and poor prognosis was analyzed. In DN patients, urine VDBP and serum miR-155-5p were highly expressed, and urine VDBP, serum miR-155-5p and mAlb, Cys C and 24-h urine protein were positively correlated (P<0.05). Moreover, the joint detection of urine VDBP and serum miR-155-5p was more valuable in diagnosis and poor prognosis prediction of DN patients than its single detection. Urine VDBP and serum miR-155-5p have good diagnostic value for DN, but their joint diagnostic value is higher, and their expression levels are all related to mAlb of DN patients, which may be used as new biological indicators for diagnosis and disease assessment.
Collapse
Affiliation(s)
- Xu Bai
- Department of Nephrology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| | - Qun Luo
- Department of Nephrology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| | - Kuibi Tan
- Department of Nephrology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| | - Liming Guo
- Department of Nephrology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
17
|
Lv J, Wu Y, Mai Y, Bu S. Noncoding RNAs in Diabetic Nephropathy: Pathogenesis, Biomarkers, and Therapy. J Diabetes Res 2020; 2020:3960857. [PMID: 32656264 PMCID: PMC7327582 DOI: 10.1155/2020/3960857] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/27/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
The correlation between diabetes and systematic well-being on human life has long established. As a common complication of diabetes, the prevalence of diabetic nephropathy (DN) has been increasing globally. DN is known to be a major cause of end-stage kidney disease (ESKD). Till now, the molecular mechanisms for DN have not been fully explored and the effective therapies are still lacking. Noncoding RNAs are a class of RNAs produced by genome transcription that cannot be translated into proteins. It has been documented that ncRNAs participate in the pathogenesis of DN by regulating inflammation, apoptosis, autophagy, cell proliferation, and other pathological processes. In this review, the pathological roles and diagnostic and therapeutic potential of three types of ncRNAs (microRNA, long noncoding RNA, and circular RNA) in the progression of DN are summarized and illustrated.
Collapse
Affiliation(s)
- Jiarong Lv
- Diabetes Research Center, Medical School of Ningbo University, Ningbo, 315000 Zhejiang, China
| | - Yu Wu
- Diabetes Research Center, Medical School of Ningbo University, Ningbo, 315000 Zhejiang, China
| | - Yifeng Mai
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315000 Zhejiang, China
| | - Shizhong Bu
- Diabetes Research Center, Medical School of Ningbo University, Ningbo, 315000 Zhejiang, China
| |
Collapse
|