1
|
Wang Y, Li D, Xun J, Wu Y, Wang HL. Construction of prognostic markers for gastric cancer and comprehensive analysis of pyroptosis-related long non-coding RNAs. World J Gastrointest Surg 2024; 16:2281-2295. [PMID: 39087128 PMCID: PMC11287702 DOI: 10.4240/wjgs.v16.i7.2281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND China's most frequent malignancy is gastric cancer (GC), which has a very poor survival rate, and the survival rate for patients with advanced GC is dismal. Pyroptosis has been connected to the genesis and development of cancer. The function of pyroptosis-related long non-coding RNAs (PRLs) in GC, on the other hand, remains uncertain. AIM To explore the construction and comprehensive analysis of the prognostic characteristics of long non-coding RNA (lncRNA) related to pyroptosis in GC patients. METHODS The TCGA database provided us with 352 stomach adenocarcinoma samples, and we obtained 28 pyroptotic genes from the Reactome database. We examined the correlation between lncRNAs and pyroptosis using the Pearson correlation coefficient. Prognosis-related PRLs were identified through univariate Cox analysis. A predictive signature was constructed using stepwise Cox regression analysis, and its reliability and independence were assessed. To facilitate clinical application, a nomogram was created based on this signature. we analyzed differences in immune cell infiltration, immune function, and checkpoints between the high-risk group (HRG) and low-risk group (LRG). RESULTS Five hundred and twenty-three PRLs were screened from all lncRNAs (absolute correlation coefficient > 0.4, P < 0.05). Nine PRLs were included in the risk prediction signature that was created through stepwise Cox regression analysis. We determined the risk score for GC patients and employed the median value as the dividing line between HRG and LRG. The ability of the risk signature to predict the overall survival (OS) of GC is demonstrated by the Kaplan-Meier analysis, risk curve, receiver operating characteristic curve, and decision curve analysis curve. The risk signature was shown to be an independent prognostic factor for OS in both univariate and multivariate Cox regression analyses. HRG showed a more efficient local immune response or modulation compared to LRG, as indicated by the predicted signal pathway analysis and examination of immune cell infiltration, function, and checkpoints (P < 0.05). CONCLUSION In general, we have created a brand-new prognostic signature using PRLs, which may provide ideas for immunotherapy in patients with GC.
Collapse
Affiliation(s)
- Yu Wang
- Department of Gastrointestinal Surgery, Hospital of Integrated Chinese and Western Medicine, Tianjin University, Tianjin 300100, China
| | - Di Li
- Department of Gastrointestinal Surgery, Hospital of Integrated Chinese and Western Medicine, Tianjin University, Tianjin 300100, China
| | - Jing Xun
- Department of Gastrointestinal Surgery, Hospital of Integrated Chinese and Western Medicine, Tianjin University, Tianjin 300100, China
| | - Yu Wu
- Department of Gastrointestinal Surgery, Hospital of Integrated Chinese and Western Medicine, Tianjin University, Tianjin 300100, China
| | - Hong-Lei Wang
- Department of Gastrointestinal Surgery, Hospital of Integrated Chinese and Western Medicine, Tianjin University, Tianjin 300100, China
| |
Collapse
|
2
|
Duan H, Shen Y, Wang C, Xia W, Zhang S, Yu S, Xu D, Cao Q, Liu H, Shen H. Cuproptosis-Related lncRNAs Modulate the Prognosis of MIBC by Regulating the Expression Pattern of Immunosuppressive Molecules Within the Tumor Microenvironment. Int J Gen Med 2024; 17:161-174. [PMID: 38268861 PMCID: PMC10806343 DOI: 10.2147/ijgm.s438501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Background Cuproptosis-related gene and long non-coding RNA (lncRNA) modulation of cancer regulation is well-established. This investigation aimed to elucidate the prognostic implications of cuproptosis-associated lncRNAs in muscle-invasive bladder cancer (MIBC). Methods Employing the Cancer Genome Atlas (TCGA) and IMvigor210 cohorts, bioinformatics and statistical analyses probed the prognostic relevance of cuproptosis-related lncRNAs. Results Co-expression analysis revealed tight associations between lncRNA expression and cuproptosis-linked genes, with 13 cuproptosis-related lncRNAs found to correlate with MIBC prognosis. Lasso regression identified a six-lncRNA prognostic signature, enabling patient stratification into high- and low-risk categories. Tissue validation substantiated differential expression of FAM13A-AS1, GHRLOS, LINC00456, OPA1-AS1, RAP2C-AS1, and UBE2Q1-AS1 between MIBC tumor and normal tissues. Comparative analyses of tumor microenvironments and immune profiles between risk groups disclosed elevated immunosuppressive molecule expression, including programmed cell death-1 (PD-L1) and T-cell immunoglobulin-3 (TIM-3), in high-risk individuals. Conclusion These findings suggest that cuproptosis-related lncRNAs may modulate the expression of immunosuppressive molecules, thereby influencing MIBC tumorigenesis and progression. Further exploration is warranted to unveil novel therapeutic targets for MIBC based on the expression patterns of cuproptosis-related lncRNAs and their impact on immune responses in the tumor microenvironment.
Collapse
Affiliation(s)
- Huangqi Duan
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yu Shen
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Chen Wang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Weimin Xia
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Shun Zhang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Shenggen Yu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ding Xu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Qifeng Cao
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Hailong Liu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Haibo Shen
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Song J, Sun X, Wang T, Yan L, Su P, Yuan L. Construction and validation of a cuproptosis-related lncRNA prognosis signature in bladder carcinoma. J Cancer Res Clin Oncol 2023; 149:11207-11221. [PMID: 37354222 DOI: 10.1007/s00432-023-05013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Bladder cancer (BLCA) is a prevalent urological tumor with high morbidity and mortality. However, BLCA treatment remains challenging due to a lack of effective biomarkers. Long non-coding RNAs (lncRNAs), as active participants in tumor progression are involved in multiple biological regulatory mechanisms, and cuproptosis-related genes participate in the development of cancer. It is important to discover cuproptosis- related lncRNAs for BLCA diagnosis and treatment. METHODS A predictive signature was constructed based on least absolute shrinkage and selection operator regression (LASSO) and Cox regression analyses of the 9 cuproptosis-related lncRNAs. Samples were divided into high-risk group and low-risk group based on their median risk scores to explore their prognosis. RESULTS This signature is well predictive, as evidenced by the receiver operating characteristic curves (ROC curves) and K-M curves. Based on the nomogram, we were able to visually forecast the survival rates of patients with BLCA at 1-, 3-, and 5-year, and the calibration plots displayed that the actual results were well matched with the predicted 1-, 3-, and 5-year survival rates. Furthermore, BLCA patients in the high-risk group had a higher Tumor Immune Dysfunction and Exclusion (TIDE) score and lower TMB. Finally, we investigated the response of antitumor drugs for BLCA patients in different risk groups, and a statistically significant difference was observed in the sensitivity of those drugs between low- and the high-risk groups. CONCLUSION According to the 9 cuproptosis-related lncRNAs, we constructed a signature which can be served as a promising prognostic biomarker for BLCA patients.
Collapse
Affiliation(s)
- Jinbo Song
- Department of Urology Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, 710054, Shaanxi, China.
| | - Xiaoke Sun
- Department of Urology Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, 710054, Shaanxi, China
| | - Ting Wang
- Department of Urology Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, 710054, Shaanxi, China
| | - Li Yan
- Department of Urology Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, 710054, Shaanxi, China
| | - Pengxiao Su
- Department of Urology Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, 710054, Shaanxi, China
| | - Leihong Yuan
- Department of Urology Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, 710054, Shaanxi, China
| |
Collapse
|
4
|
Shen J, Du M, Liang S, Wang L, Bi J. Construction of a cuproptosis-associated lncRNA prognostic signature for bladder cancer and experimental validation of cuproptosis-related lncRNA UBE2Q1-AS1. Front Med (Lausanne) 2023; 10:1222543. [PMID: 37614950 PMCID: PMC10442536 DOI: 10.3389/fmed.2023.1222543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction Bladder cancer (BLCA) is the ninth most common malignancy worldwide and the fourth most common cancer in men. Copper levels are significantly altered in patients with thyroid, breast, lung, cervical, ovarian, pancreatic, oral, gastric, bladder, and prostate cancers. Outcomes can be predicted by constructing signatures using lncRNA-related genes associated with outcomes. Methods We identified lncRNAs related to outcomes, those differentially expressed in bladder cancer, and cuproptosis-related lncRNAs from TCGA. We identified the intersection to obtain 12 genes and established a prognostic risk signature consisting of eight genes using LASSO-penalized multivariate Cox analysis. We constructed a training set, performed survival analysis on the high-and low-risk groups, and performed validation in the test and full sets. There existed a substantial contrast in the likelihood of survival among the cohorts of high and low risk. An in-depth analysis of the gene mutations associated with tumors was conducted to evaluate the risk of developing cancer. We also performed gene analysis on neoadjuvant chemotherapy. We conducted experimental validation on the key gene UBE2Q1-AS1 in our prognostic signature. Results The risk signature we constructed shows significant differences between the high-risk group and the low-risk group. Univariate survival analysis of the eight genes in our signature showed that each gene distinguished between high- and low-risk groups. Sub-group analysis revealed that our risk score differed significantly in tumor stage, age, and gender. The analysis results of the tumor mutation burden (TMB) showed a significant difference in the TMB between the low- and high-risk groups, which had a direct impact on the outcomes. These findings highlight the importance of TMB as a potential prognostic marker in cancer detection and prevention. We analyzed the immune microenvironment and found significant differences in immune function, validation responses, immunotherapy-related positive markers, and critical steps in the tumor immunity cycle between the high- and low-risk groups. We found that the effect of anti-CTLA4 and PD-1 was higher in the high-risk group than in the low-risk group.Gene analysis of neoadjuvant chemotherapy revealed that the treatment effect in the high-risk group was better than in the low-risk group. The key gene UBE2Q1-AS1 in our prognostic signature can significantly influence the cell viability, migration, and proliferation of cancer cells. Discussion We established a signature consisting of eight genes constructed from cuproptosis-related lncRNAs that have potential clinical applications for outcomes prediction, diagnosis, and treatment.
Collapse
Affiliation(s)
- Junlin Shen
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mingyang Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuang Liang
- Pharmacy Department, Hebei Medical University Third Hospital, Shijiazhuang, China
| | - Linhui Wang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Taheri M, Askari A, Hussen BM, Ghafouri-Fard S, Rashnoo F. Role of MAGI2-AS3 in malignant and non-malignant disorders. Pathol Res Pract 2023; 246:154530. [PMID: 37196468 DOI: 10.1016/j.prp.2023.154530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
MAGI2 Antisense RNA 3 (MAGI2-AS3) is a long non-coding RNA (lncRNA) transcribed from a locus on 7q21.11. This lncRNA has been described to be abnormally expressed in a variety of malignancies in correlation with many clinical characteristics. Moreover, it might participate in the pathogenesis of congenital diaphragmatic hernia, Alzheimer's disease and intervertebral disc degeneration. Mechanistically, MAGI2-AS3 can serve as a molecular sponge for miR-142-3p, miR-424-5p, miR-15b, miR-233, miR-452-5p, miR-629-5p, miR-25, miR-155, miR-23a-3p, miR-519c-3p, miR-374b-5p, miR-374a, miR-31-5p, miR-3163, miR-525-5p, miR-15-5p, miR-374a-5p, miR-374b-5p, miR-218-5p, miR-141-3p and miR-200a-3p to regulate expression of their mRNA targets. The current review summarizes the role of MAGI2-AS3 in different disorders to highlight its importance in their pathophysiology.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Fariborz Rashnoo
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
6
|
Zhang YY, Li XW, Li XD, Zhou TT, Chen C, Liu JW, Wang L, Jiang X, Wang L, Liu M, Zhao YG, Li SD. Comprehensive analysis of anoikis-related long non-coding RNA immune infiltration in patients with bladder cancer and immunotherapy. Front Immunol 2022; 13:1055304. [PMID: 36505486 PMCID: PMC9732092 DOI: 10.3389/fimmu.2022.1055304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Background Anoikis is a form of programmed cell death or programmed cell death(PCD) for short. Studies suggest that anoikis involves in the decisive steps of tumor progression and cancer cell metastasis and spread, but what part it plays in bladder cancer remains unclear. We sought to screen for anoikis-correlated long non-coding RNA (lncRNA) so that we can build a risk model to understand its ability to predict bladder cancer prognosis and the immune landscape. Methods We screened seven anoikis-related lncRNAs (arlncRNAs) from The Cancer Genome Atlas (TCGA) and designed a risk model. It was validated through ROC curves and clinicopathological correlation analysis, and demonstrated to be an independent factor of prognosis prediction by uni- and multi-COX regression. In the meantime, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, immune infiltration, and half-maximal inhibitory concentration prediction (IC50) were implemented with the model. Moreover, we divided bladder cancer patients into three subtypes by consensus clustering analysis to further study the differences in prognosis, immune infiltration level, immune checkpoints, and drug susceptibility. Result We designed a risk model of seven arlncRNAs, and proved its accuracy using ROC curves. COX regression indicated that the model might be an independent prediction factor of bladder cancer prognosis. KEGG enrichment analysis showed it was enriched in tumors and immune-related pathways among the people at high risk. Immune correlation analysis and drug susceptibility results indicated that it had higher immune infiltration and might have a better immunotherapy efficacy for high-risk groups. Of the three subtypes classified by consensus clustering analysis, cluster 3 revealed a positive prognosis, and cluster 2 showed the highest level of immune infiltration and was sensitive to most chemistries. This is helpful for us to discover more precise immunotherapy for bladder cancer patients. Conclusion In a nutshell, we found seven arlncRNAs and built a risk model that can identify different bladder cancer subtypes and predict the prognosis of bladder cancer patients. Immune-related and drug sensitivity researches demonstrate it can provide individual therapeutic schedule with greater precision for bladder cancer patients.
Collapse
Affiliation(s)
- Yao-Yu Zhang
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China,Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Wei Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Xiao-Dong Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China,Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ting-Ting Zhou
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Chao Chen
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Ji-Wen Liu
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Li Wang
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Xin Jiang
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Liang Wang
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Ming Liu
- Department of Urology, Xuanhan Chinese Medicine Hospital, Dazhou, China
| | - You-Guang Zhao
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China,*Correspondence: You-Guang Zhao, ; Sha-dan Li,
| | - Sha-dan Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China,Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China,*Correspondence: You-Guang Zhao, ; Sha-dan Li,
| |
Collapse
|
7
|
Jin Q, Gong Q, Le X, He J, Zhuang L. Bioinformatics and Experimental Analyses Reveal Immune-Related LncRNA-mRNA Pair AC011483.1- CCR7 as a Biomarker and Therapeutic Target for Ischemic Cardiomyopathy. Int J Mol Sci 2022; 23:ijms231911994. [PMID: 36233294 PMCID: PMC9569729 DOI: 10.3390/ijms231911994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic cardiomyopathy (ICM), which increases along with aging, is the leading cause of heart failure. Currently, immune response is believed to be critical in ICM whereas the roles of immune-related lncRNAs remain vague. In this study, we aimed to systematically analyze immune-related lncRNAs in the aging-related disease ICM. Here, we downloaded publicly available RNA-seq data from ischemic cardiomyopathy patients and non-failing controls (GSE116250). Weighted gene co-expression network analysis (WGCNA) was performed to identify key ICM-related modules. The immune-related lncRNAs of key modules were screened by co-expression analysis of immune-related mRNAs. Then, a competing endogenous RNA (ceRNA) network, including 5 lncRNAs and 13 mRNAs, was constructed using lncRNA-mRNA pairs which share regulatory miRNAs and have significant correlation. Among the lncRNA-mRNA pairs, one pair (AC011483.1-CCR7) was verified in another publicly available ICM dataset (GSE46224) and ischemic cell model. Further, the immune cell infiltration analysis of the GSE116250 dataset revealed that the proportions of monocytes and CD8+ T cells were negatively correlated with the expression of AC011483.1-CCR7, while plasma cells were positively correlated, indicating that AC011483.1-CCR7 may participate in the occurrence and development of ICM through immune cell infiltration. Together, our findings revealed that lncRNA-mRNA pair AC011483.1-CCR7 may be a novel biomarker and therapeutic target for ICM.
Collapse
Affiliation(s)
- Qiao Jin
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Gong
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuan Le
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jin He
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lenan Zhuang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-158-3612-8207
| |
Collapse
|
8
|
Ma X, Yan W, Xu P, Ma L, Zan Y, Huang L, Wang G, Liu L, Hui W. LncRNA-p21 suppresses cell proliferation and induces apoptosis in gastric cancer by sponging miR-514b-3p and up-regulating ARHGEF9 expression. Biol Chem 2022; 403:945-958. [PMID: 35947460 DOI: 10.1515/hsz-2022-0153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022]
Abstract
The long non-coding RNA p21 (lncRNA-p21) was a tumor suppressor gene in most cancer types including gastric cancer (GC). We aimed to identify a specific lncRNA-p21-involved pathway in regulating the proliferation and apoptosis of GC cells. A lower lncRNA-p21 expression in tumors was associated with advanced disease stage and predicted worse survival of GC patients. LncRNA-p21 overexpression in GC cell line somatic gastric cancer (SGC)-7901 and human gastric cancer (HGC)-27 suppressed cell proliferation and enhanced apoptosis, while lncRNA-p21 knockdown caused the opposite effects. Through bioinformatics analysis and luciferase-based reporter assays, we identified miR-514b-3p as a sponge target of lncRNA-p21. Cdc42 guanine nucleotide exchange factor 9 (ARHGEF9), functioned as a tumor suppress factor in GC, was found as the downstream target of miR-514-3p, and their expressions were negatively correlated in GC tumor tissues. In addition, like lncRNA-p21 overexpression alone, miR-514-3p inactivation alone also led to decreased proliferation and increased apoptosis in SGC-7901 and HGC-27 cells, which were markedly attenuated by additional ARHGEF9 knockdown. Xenograft SGC-7901 cells with more lncRNA-p21 or ARHGEF9 expressions or with less miR-514-3p expression exhibited obviously slower in vivo growth than the control SGC-7901 cells in nude mice. Our study reveals a novel lncRNA-p21/miR-514b-3p/ARHGEF9 pathway that can be targeted for GC therapy.
Collapse
Affiliation(s)
- Xiaobin Ma
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Wenyu Yan
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Li Ma
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Ying Zan
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Lanxuan Huang
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Guanying Wang
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Lili Liu
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Wentao Hui
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| |
Collapse
|
9
|
Wang K, Ye Y, Huang L, Wu R, He R, Yao C, Wang S. The Long Non-coding RNA AC148477.2 Is a Novel Therapeutic Target Associated With Vascular Smooth Muscle Cells Proliferation of Femoral Atherosclerosis. Front Cardiovasc Med 2022; 9:954283. [PMID: 35872920 PMCID: PMC9297286 DOI: 10.3389/fcvm.2022.954283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Arteriosclerosis obliterans (ASO) is a limb manifestation of large vessel atherosclerosis. Phenotype switching of vascular smooth muscle cells (VSMCs) occurs in the course of the pathological process. The underlying mechanism of SMCs proliferation remains unclear. Several studies have demonstrated that the dysregulation of long non-coding RNA (lncRNAs) plays a pivotal part in the progression of ASO by exacerbating the proliferation of VSMCs. Based on the endogenous competitive RNA (ceRNA) hypothesis, the mechanism of lncRNAs involved in the pathology of VSMCs was exposed, while the entire map of the regulatory network remains to be elucidated. In the current study, genes and the lncRNAs modules that are relevant to the clinical trait were confirmed through weighted gene co-expression network analysis (WGCNA). In this study, we comprehensively constructed a specific lncRNAs-mediated ceRNA and RBP network. The three lncRNAs, HMGA1P4, C5orf66, and AC148477.2, influenced the proliferation of VSMCs and were found to be associated with the immune landscape, thus they were ultimately screened out. Further verification revealed that AC147488.2 was significantly down-regulated in both ASO arteries and all stages of proliferative VSMCs, which implied that AC147488.2 might have a significant impact on ASO. This finding would improve our understanding of the epigenetic regulation of ASO and unravel novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Kangjie Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanchen Ye
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Huang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ridong Wu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rongzhou He
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chen Yao
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chen Yao,
| | - Shenming Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
[Pan-cancer analysis of the expression pattern of long non-coding RNA MIR22HG]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:473-485. [PMID: 35527483 PMCID: PMC9085579 DOI: 10.12122/j.issn.1673-4254.2022.04.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To conduct a pan-cancer analysis of the expression of long non-coding RNA (lncRNA) MIR22HG and explore its association with clinical characteristics. METHODS We analyzed the expression of MIR22HG in different tumors and its association with clinical staging, lymph node metastasis, tumor mutation burden (TMB) and microsatellite instability (MSI) using R package based on the Cancer Genome Atlas (TCGA) datasets. The relationship between MIR22HG expression and infiltrating immune cells was analyzed using TIMER algorithm. The association of MIR22HG gene alteration frequency with the clinical outcomes was examined using cBioPortal online software. Data form Genomics of Drug Sensitivity in Cancer (GDSC) were used to analyze the relationship between MIR22HG and the sensitivity of chemotherapy drugs. We specifically analyzed MIR22HG expression in hepatocellular carcinoma (HCC) and its correlation with sorafenib treatment using GEO database and verified the results in 12 pairs of HCC specimens. Kaplan-Meier analysis was performed to analyze the correlation of MIR22HG with the outcomes of sorafenib treatment. We also tested the effects of MIR22HG overexpression and knockdown on IC50 of sorafenib in HCC cells. RESULTS MIR22HG was downregulated in most tumors (P < 0.05), where its deletion mutations were frequent, and associated with a poor prognosis (P < 0.05). In many tumors, MIR22HG expression level was correlated with clinical stage, lymph node metastasis, TMB, MSI, immune cell infiltration, immune checkpoint-related genes, and sensitivity to common chemotherapeutic drugs (P < 0.05). Among the 6 common infiltrating immune cells in cancers, neutrophil infiltration had the strongest correlation with MIR22HG expression level, especially in breast cancer, rectal cancer and kidney renal papillary cell carcinoma (P < 0.05). MIR22HG was downregulated in HCC in association with HCC progression (P < 0.05). In HCC patients, a low MIR22HG expression was associated with a favorable outcome after sorafenib treatment (HR=2.94, P=0.075) and was capable of predicting the response to sorafenib treatment (AUC=0.8095). Compared with the negative control, MIR22HG overexpression obviously reduced sorafenib sensitivity (with IC50 of 7.731 vs 15.61) while MIR22HG knockdown increased sorafenib sensitivity of HCC cells (with IC50 of 7.986 vs 5.085). CONCLUSION MIR22HG expression level is correlated with clinical stage, lymph node metastasis, TMB, MSI, immune cell infiltration, and chemosensitivity in most cancer, suggesting its potential as an immunotherapeutic target and also a prognostic biomarker for tumors.
Collapse
|
11
|
Yan S, Xu J, Liu B, Ma L, Tan H, Fang C. Integrative bioinformatics analysis identifies LINC01614 as a potential prognostic signature in esophageal cancer. Transl Cancer Res 2022; 10:1804-1812. [PMID: 35116503 PMCID: PMC8798299 DOI: 10.21037/tcr-20-2529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/07/2021] [Indexed: 12/26/2022]
Abstract
Background Esophageal cancer (EC) is one of the most common gastrointestinal cancers and the incidence is on the increase in recent years. The aim of the present study was to assess novel long non-coding RNA (lncRNA) biomarkers for the prognosis of EC through the analysis of gene expression microarrays. Methods Three datasets (GSE53622, GSE53624, and GSE53625) were downloaded from the Gene Expression Omnibus (GEO) database and EC patients’ clinical information were from The Cancer Genome Atlas (TCGA) databases. Differentially expressed genes (DEGs) were screened by comparing tumor tissues with normal tissues using limma R package. The Gene Expression Profiling Interactive Analysis 2 (GEPIA2) database was used to obtain the novel lncRNAs and their co-expression genes in EC and these were visualized with the Cytoscape software. The Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology Based Annotation System (KOBAS) database was used to analyze the functions enrichment of selected DEGs. Cell Counting Kit-8 (CCK8) and Transwell assays were used to further confirm the function of target lncRNAs. Results We identified 24 differentially expressed (DE) lncRNAs and 659 DE mRNAs from the intersection of GEO and TCGA databases. And we found that only LINC01614 was concerned with a candidate prognostic signature in EC. “Extracellular matrix (ECM)-receptor interaction” and “PI3K-Akt signaling pathway” were observed, and we constructed a lncRNA-mRNA co-expression network for EC that includes LINC01614 and 64 mRNAs. The results of CCK8 and Transwell assays showed that suppression of LINC01614 inhibited EC cell proliferation and migration. Conclusions Our study might provide LINC01614 as a novel lncRNA biomarker for diagnosis and prognosis in EC.
Collapse
Affiliation(s)
- Shuo Yan
- Department of Interventional Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jichong Xu
- Department of Interventional Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingyan Liu
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lin Ma
- Department of Interventional Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huaqiao Tan
- Department of Interventional Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chun Fang
- Department of Interventional Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Kotelevets L, Chastre E. A New Story of the Three Magi: Scaffolding Proteins and lncRNA Suppressors of Cancer. Cancers (Basel) 2021; 13:4264. [PMID: 34503076 PMCID: PMC8428372 DOI: 10.3390/cancers13174264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
Scaffolding molecules exert a critical role in orchestrating cellular response through the spatiotemporal assembly of effector proteins as signalosomes. By increasing the efficiency and selectivity of intracellular signaling, these molecules can exert (anti/pro)oncogenic activities. As an archetype of scaffolding proteins with tumor suppressor property, the present review focuses on MAGI1, 2, and 3 (membrane-associated guanylate kinase inverted), a subgroup of the MAGUK protein family, that mediate networks involving receptors, junctional complexes, signaling molecules, and the cytoskeleton. MAGI1, 2, and 3 are comprised of 6 PDZ domains, 2 WW domains, and 1 GUK domain. These 9 protein binding modules allow selective interactions with a wide range of effectors, including the PTEN tumor suppressor, the β-catenin and YAP1 proto-oncogenes, and the regulation of the PI3K/AKT, the Wnt, and the Hippo signaling pathways. The frequent downmodulation of MAGIs in various human malignancies makes these scaffolding molecules and their ligands putative therapeutic targets. Interestingly, MAGI1 and MAGI2 genetic loci generate a series of long non-coding RNAs that act as a tumor promoter or suppressor in a tissue-dependent manner, by selectively sponging some miRNAs or by regulating epigenetic processes. Here, we discuss the different paths followed by the three MAGIs to control carcinogenesis.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Eric Chastre
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| |
Collapse
|
13
|
Kai-Xin L, Cheng C, Rui L, Zheng-Wei S, Wen-Wen T, Peng X. Roles of lncRNA MAGI2-AS3 in human cancers. Biomed Pharmacother 2021; 141:111812. [PMID: 34126355 DOI: 10.1016/j.biopha.2021.111812] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are noncoding RNAs more than 200 nucleotides in length. A growing number of reports indicate that lncRNAs play a key role in multiple cancers by serving as oncogenes or tumor suppressor genes. MAGI2 antisense RNA 3 (MAGI2-AS3) is ubiquitously expressed in human cancers, and the level of MAGI2-AS3 expression is associated with the progression and prognosis of cancers. Moreover, dysregulation of MAGI2-AS3 has been found to regulate cancer cell proliferation, cell death, invasion and metastasis and treatment resistance by serving as a competing endogenous RNA (ceRNA), epigenomic regulator, and transcriptional regulator. Moreover, increasing evidence shows that MAGI2-AS3 may be a potential biomarker for cancer prognosis and a potential target for cancer therapy. In this review, we summarize current research on the functions, mechanisms and clinical significance of the lncRNA MAGI2-AS3 in cancer development.
Collapse
Affiliation(s)
- Liu Kai-Xin
- Honghui-hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Cheng Cheng
- Gansu Provincial Maternal and Child Health Hospital, Lanzhou 730000, China
| | - Li Rui
- Honghui-hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Shi Zheng-Wei
- Honghui-hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Tan Wen-Wen
- Department of Bone Disease and Oncology, Honghui Hospital, Xi'an Jiaotong University, Shaanxi 710054, China
| | - Xu Peng
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi 710054, China.
| |
Collapse
|
14
|
Novel insights for lncRNA MAGI2-AS3 in solid tumors. Biomed Pharmacother 2021; 137:111429. [PMID: 33761624 DOI: 10.1016/j.biopha.2021.111429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 02/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) refer to elements of genomic transcription with more than 200 nucleotides that are not translated into proteins, but have crucial roles in cancer progression. MAGI2-AS3, a novel lncRNA, has been reported to be aberrantly expressed in many solid tumors. Increasingly, studies have demonstrated that MAGI2-AS3 expression is significantly correlated with patient clinical characteristics, and that MAGI2-AS3 can regulate multiple biological processes through target-gene regulation. Furthermore, MAGI2-AS3 may serve as both a diagnostic biomarker and as a promising therapeutic target against solid tumors. In this review, we summarize the current knowledge regarding the biological functions and related molecular mechanisms of MAGI2-AS3 in solid-tumor progression. We conclude that understanding MAGI2-AS3 properties may provide new insights into the diagnoses and treatments of solid tumors.
Collapse
|
15
|
Tang J, Huang F, Wang H, Cheng F, Pi Y, Zhao J, Li Z. Knockdown of TPT1-AS1 inhibits cell proliferation, cell cycle G1/S transition, and epithelial-mesenchymal transition in gastric cancer. Bosn J Basic Med Sci 2021; 21:39-46. [PMID: 32156253 PMCID: PMC7861632 DOI: 10.17305/bjbms.2020.4470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/16/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs are considered to be critical regulators of tumor progression. Tumor protein translationally controlled 1 antisense RNA 1 (TPT1-AS1) was shown to have an oncogenic role in cervical and ovarian cancer. The clinical significance and biological function of TPT1-AS1 in gastric cancer (GC) are not clear. In this study, we analyzed the expression of TPT1-AS1 in GC tissues and cell lines and performed functional and mechanistic analysis of TPT1-AS1 effects on GC cell proliferation, migration, and invasion. TPT1-AS1 expression was determined in 76 pairs of GC tissues vs. matched adjacent normal tissues and in four GC cell lines (SGC-7901, AGS, BGC-823, and MGC-803) vs. GES-1 cell line by quantitative reverse transcription PCR. SGC-7901 and MGC-803 cells were transfected with small interfering RNA or scrambled negative control, and cell proliferation, colony formation, migration, invasion and cell cycle assays were performed. The expression of proteins involved in cell cycle progression and epithelial-mesenchymal transition was analyzed by Western blot. TPT1-AS1 expression was significantly higher in GC tissues and cell lines compared to controls. The overexpression of TPT1-AS1 was significantly correlated with TNM stage and lymph node metastasis, and it was associated with worse prognosis of GC patients according to the Kaplan-Meier survival analysis and Cox proportional hazard regression analysis. The knockdown of TPT1-AS1 significantly inhibited proliferation, cell cycle G1/S transition, migration, and invasion of SGC-7901 and MGC-803 cells. Moreover, TPT1-AS1 knockdown downregulated the expression of cyclin-dependent kinase (CDK) 4, cyclin D1, and vimentin and upregulated the expression of p21 and E-cadherin. Our findings suggest that TPT1-AS1 may be a promising therapeutic target in GC.
Collapse
Affiliation(s)
- Jun Tang
- Department of General Surgery, The Center Hospital of Ezhou, Ezhou, China
| | - Fei Huang
- Department of Medical Laboratory, The Center Hospital of Ezhou, Ezhou, China
| | - Hui Wang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Cheng
- Department of Medical Laboratory, The Center Hospital of Ezhou, Ezhou, China
| | - Yaping Pi
- Department of General Surgery, The Center Hospital of Ezhou, Ezhou, China
| | - Juanjuan Zhao
- Department of Pathology, The Center Hospital of Ezhou, Ezhou, China
| | - Zhihong Li
- Department of General Surgery, The Center Hospital of Ezhou, Ezhou, China
| |
Collapse
|
16
|
Shen D, Xu J, Cao X, Cao X, Tan H, Deng H. Long noncoding RNA MAGI2-AS3 inhibits bladder cancer progression through MAGI2/PTEN/epithelial-mesenchymal transition (EMT) axis. Cancer Biomark 2021; 30:155-165. [PMID: 33104021 DOI: 10.3233/cbm-201421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long noncoding RNA (lncRNA) are critical regulators of tumor progression. OBJECTIVE To determine how the lncRNA membrane associated guanylate kinase, WW and PDZ domain-containing 2 (MAG12) antisense RNA 3 (MAGI2-AS3) and the phosphatase and tensin homolog (PTEN) gene function in regulating bladder cancer (Bca) progression. METHODS Total RNA from 80 Bca tissues and 30 paired para-cancerous tissues from patients was sequentially extracted, quantified, purified, and reverse transcribed using RT-PCR. A library was constructed and sequenced. Four Bca cell lines and a normal urothelial cell line were transfected with lentiviral plasmids, and cell migration and invasion were assayed in vitro. An orthotopic mouse model of Bca was created for in vivo studies. RESULTS MAGI2-AS3 expression was significantly downregulated in Bca, compared with normal tissues, and negatively associated with tumor stage and a poor prognosis. MAGI2-AS3 and its sense RNA MAGI2 showed significant and positive correlation. The expression of MAGI2 and its downstream gene, PTEN, increased in Bca cells overexpressing MAGI2-AS3, and interference by MAGI2 expression reversed the migration and invasion inhibited by MAGI2-AS3 overexpression. CONCLUSION MAGI2-AS3 overexpression inhibited Bca cell progression by regulating the MAGI2/PTEN/epithelial-mesenchymal transition, offering novel insights into the mechanism of Bca progression.
Collapse
Affiliation(s)
- Daqing Shen
- Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Jing Xu
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xiande Cao
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xianxiang Cao
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Hailin Tan
- Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Huanghao Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|