1
|
Tharayil SP, Rasal S, Gawde U, Mukherjee S, Patil A, Joshi B, Idicula-Thomas S, Shukla P. Relation of mitochondrial DNA copy number and variants with the clinical characteristics of polycystic ovary syndrome. Mol Cell Endocrinol 2024; 594:112386. [PMID: 39423939 DOI: 10.1016/j.mce.2024.112386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Mounting evidences suggests mitochondrial dysfunction as a novel contributor in the pathogenesis of PCOS. Herein, we analyzed mtDNA copy number, a biomarker of mitochondrial function in women with PCOS and non-PCOS participants and study its correlation with their clinical characteristics. In this study, we further analyzed association of 383 mtDNA variants, as reported previously by us, with characteristic traits of PCOS and perform structural analysis of mutated protein. Our results indicate relative mitochondrial DNA (mtDNA) copy number to be significantly reduced in women with PCOS compared to non-PCOS group and significantly inversely related to waist to hip ratio (WHR), triglycerides and positively related to high density lipoprotein-cholesterol (HDL-C). After adjustment of the age in the PCOS group, significantly negative correlation of mtDNA copy number with WHR was observed. Unsupervised hierarchical clustering analysis revealed rare, low heteroplasmic mtDNA variants such as 12556G, 1488T, 9200G, 9670G, 3308G, 14480G, 15914T and 5426G to be strongly associated with PCOS related traits. Among these variants, variant 12256G in ND5 gene affected both the flexibility and overall stability of the protein structure. This study is first to reveal significant correlation of mtDNA copy number with WHR in women with PCOS indicating link between mitochondrial dysfunction with central obesity in PCOS. we also first time showed association of rare mtDNA variants with characteristics traits of PCOS highlighting the clinical significance of rare mtDNA variants, which may cumulatively act as early predictors of risk of PCOS and its related comorbidities which may help in the management of PCOS.
Collapse
Affiliation(s)
- Samia Palat Tharayil
- Department of Molecular Endocrinology, The Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India
| | - Sayli Rasal
- Department of Molecular Endocrinology, The Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India
| | - Ulka Gawde
- Biomedical Informatics Centre, The Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, The Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India
| | - Anushree Patil
- Department of Clinical Research, The Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India
| | - Beena Joshi
- Department of Operational and Implementation Research, The Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, The Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India
| | - Pallavi Shukla
- Department of Molecular Endocrinology, The Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
2
|
Zhou Y, Jin Y, Wu T, Wang Y, Dong Y, Chen P, Hu C, Pan N, Ye C, Shen L, Lin M, Fang T, Wu R. New insights on mitochondrial heteroplasmy observed in ovarian diseases. J Adv Res 2024; 65:211-226. [PMID: 38061426 PMCID: PMC11519015 DOI: 10.1016/j.jare.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/26/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024] Open
Abstract
BACKGROUND The reportedly high mutation rate of mitochondrial DNA (mtDNA) may be attributed to the absence of histone protection and complete repair mechanisms. Mitochondrial heteroplasmy refers to the coexistence of wild-type and mutant mtDNA. Most healthy individuals carry a low point mutation load (<1 %) in their mtDNA, typically without any discernible phenotypic effects. However, as it exceeds a certain threshold, it may cause the onset of various diseases. Since the ovary is a highly energy-intensive organ, it relies heavily on mitochondrial function. Mitochondrial heteroplasmy can potentially contribute to a variety of significant ovarian disorders. AIM OF REVIEW In this review, we have elucidated the close relationship between mtDNA heteroplasmy and ovarian diseases, and summarized novel avenues and strategies for the potential treatment of these ovarian diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Mitochondrial heteroplasmy can potentially contribute to a variety of significant ovarian disorders, including polycystic ovary syndrome, premature ovarian insufficiency, and endometriosis. Current strategies related to mitochondrial heteroplasmy are untargeted and have low bioavailability. Nanoparticle delivery systems loaded with mitochondrial modulators, mitochondrial replacement/transplantation therapy, and mitochondria-targeted gene editing therapy may offer promising paths towards potentially more effective treatments for these diseases, despite ongoing challenges.
Collapse
Affiliation(s)
- Yong Zhou
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China; Women's Reproductive Health Key Laboratory of Zhejiang Province, People's Republic of China
| | - Yang Jin
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Tianyu Wu
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Yinfeng Wang
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Yuanhang Dong
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Pei Chen
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Changchang Hu
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Ningping Pan
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Chaoshuang Ye
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Li Shen
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Mengyan Lin
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Tao Fang
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Ruijin Wu
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China; Women's Reproductive Health Key Laboratory of Zhejiang Province, People's Republic of China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, People's Republic of China.
| |
Collapse
|
3
|
Liu Z, Xie Y, Lou X, Zeng X, Zhang L, Yu M, Wang J, Li J, Shen D, Li H, Zhao S, Zhou Y, Fang H, Lyu J, Yuan Y, Wang Z, Jin L, Fang F. A novel m.5906G > a variant in MT-CO1 causes MELAS/Leigh overlap syndrome. Mol Genet Genomics 2024; 299:102. [PMID: 39460813 DOI: 10.1007/s00438-024-02181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/02/2024] [Indexed: 10/28/2024]
Abstract
The MELAS/Leigh overlap syndrome manifests with a blend of clinical and radiographic traits from both MELAS and LS. However, the association of MELAS/Leigh overlap syndrome with MT-CO1 gene variants has not been previously reported. In this study, we report a patient diagnosed with MELAS/Leigh overlap syndrome harboring the m.5906G > A variant in MT-CO1, with biochemical evidence supporting the pathogenicity of the variant. The variant m.5906G > A that led to a synonymous variant in the start codon of MT-CO1 was filtered as the candidate disease-causing variant of the patient. Patient-derived fibroblasts were used to generate a series of monoclonal cells carrying different m.5906G > A variant loads for further functional assays. The oxygen consumption rate, ATP production, mitochondrial membrane potential and lactate assay indicated an impairment of cellular bioenergetics due to the m.5906G > A variant. Blue native PAGE analysis revealed that the m.5906G > A variant caused a deficiency in the content of mitochondrial oxidative phosphorylation complexes. Furthermore, molecular biology assays performed for the pathogenesis, mtDNA copy number, mtDNA-encoded subunits, and recovery capacity of mtDNA were all deficient due to the m.5906G > A variant, which might be caused by mtDNA replication deficiency. Overall, our findings demonstrated the pathogenicity of m.5906G > A variant and proposed a potential pathogenic mechanism, thereby expanding the genetic spectrum of MELAS/Leigh overlap syndrome.
Collapse
Affiliation(s)
- Zhimei Liu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yaojun Xie
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaoting Lou
- Laboratory Medicine Center, Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiaofei Zeng
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Luyi Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Junling Wang
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jiuwei Li
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Danmin Shen
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hua Li
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Suzhou Zhao
- Fujungenetics Technologies Co, Ltd, Beijing, 100176, China
| | - Yuwei Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jianxin Lyu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.
| | - Liqin Jin
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Department of Scientific Research, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
4
|
Koyuncu H, Kara N, Dabak Ş. Investigation of the possible effects of night shift on telomere length and mtDNA copy number in nurses. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-14. [PMID: 38830229 DOI: 10.1080/15257770.2024.2348089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
In this study, we aimed to investigate the impacts of altered circadian rhythm on telomere length and mtDNA copy number (mtDNA-CN) in nurses working night shifts. In our study, 52 healthy nurses working in shifts at Ondokuz Mayıs University Hospital and 45 healthy control subjects working during the day were included. qRT-PCR technique was used for the determination of telomere length and mtDNA-CN. It was observed that the shift-work group had poor sleep quality (p = 0.004), feeling tired (p < 0.01) and stressed (p = 0.02) more than control group working during the day. Nurses working in shifts were found to have 1.18 times longer telomeres with respect to the control group working during the day (p = 0.005). When compared among shift workers, poor sleep quality and insufficient sleep duration shortened telomeres (r = 0.32; p = 0.02). There was no statistically significantdisparity regarding mtDNA-CN among the nurses working in shifts and the control group working during the day (p = 0.07). Insufficient sleep was associated with decreased mtDNA-CN when shift-working nurses were compared according to sleep quality (p = 0.006). Furthermore, mtDNA-CN of nurses with poor sleep quality was correlated with lower mtDNA-CN in comparison to nurses with good sleep quality (r = 0.284; p = 0.04). The mtDNA-CN of the nurses was positively associated with the sleep duration the night sleep before the night shift (r = 0.32; p = 0.02). Inadequate sleep duration and quality were observed to cause a reduction in mtDNA-CN of nurses. In conclusion, it has been observed that poor sleep quality and duration are related to shortened telomere length and decreased mtDNA-CN in night shift nurses.
Collapse
Affiliation(s)
- Hilal Koyuncu
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayıs University, Samsun, Turkey
| | - Nurten Kara
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayıs University, Samsun, Turkey
| | - Şennur Dabak
- Faculty of Medicine, Department of Public Health, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
5
|
Vallbona-Garcia A, Lindsey PJ, Kamps R, Stassen APM, Nguyen N, van Tienen FHJ, Hamers IHJ, Hardij R, van Gisbergen MW, Benedikter BJ, de Coo IFM, Webers CAB, Gorgels TGMF, Smeets HJM. Mitochondrial DNA D-loop variants correlate with a primary open-angle glaucoma subgroup. FRONTIERS IN OPHTHALMOLOGY 2024; 3:1309836. [PMID: 38983060 PMCID: PMC11182222 DOI: 10.3389/fopht.2023.1309836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/29/2023] [Indexed: 07/11/2024]
Abstract
Introduction Primary open-angle glaucoma (POAG) is a characteristic optic neuropathy, caused by degeneration of the optic nerve-forming neurons, the retinal ganglion cells (RGCs). High intraocular pressure (IOP) and aging have been identified as major risk factors; yet the POAG pathophysiology is not fully understood. Since RGCs have high energy requirements, mitochondrial dysfunction may put the survivability of RGCs at risk. We explored in buffy coat DNA whether mtDNA variants and their distribution throughout the mtDNA could be risk factors for POAG. Methods The mtDNA was sequenced from age- and sex-matched study groups, being high tension glaucoma (HTG, n=71), normal tension glaucoma patients (NTG, n=33), ocular hypertensive subjects (OH, n=7), and cataract controls (without glaucoma; n=30), all without remarkable comorbidities. Results No association was found between the number of mtDNA variants in genes encoding proteins, tRNAs, rRNAs, and in non-coding regions in the different study groups. Next, variants that controls shared with the other groups were discarded. A significantly higher number of exclusive variants was observed in the D-loop region for the HTG group (~1.23 variants/subject), in contrast to controls (~0.35 variants/subject). In the D-loop, specifically in the 7S DNA sub-region within the Hypervariable region 1 (HV1), we found that 42% of the HTG and 27% of the NTG subjects presented variants, while this was only 14% for the controls and OH subjects. As we have previously reported a reduction in mtDNA copy number in HTG, we analysed if specific D-loop variants could explain this. While the majority of glaucoma patients with the exclusive D-loop variants m.72T>C, m.16163 A>G, m.16186C>T, m.16298T>C, and m.16390G>A presented a mtDNA copy number below controls median, no significant association between these variants and low copy number was found and their possible negative role in mtDNA replication remains uncertain. Approximately 38% of the HTG patients with reduced copy number did not carry any exclusive D-loop or other mtDNA variants, which indicates that variants in nuclear-encoded mitochondrial genes, environmental factors, or aging might be involved in those cases. Conclusion In conclusion, we found that variants in the D-loop region may be a risk factor in a subgroup of POAG, possibly by affecting mtDNA replication.
Collapse
Affiliation(s)
- Antoni Vallbona-Garcia
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Patrick J Lindsey
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Rick Kamps
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Alphons P M Stassen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Nhan Nguyen
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Florence H J van Tienen
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Ilse H J Hamers
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Rianne Hardij
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Marike W van Gisbergen
- Department of Dermatology, Maastricht University Medical Center, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Birke J Benedikter
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Irenaeus F M de Coo
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Hubert J M Smeets
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
6
|
Bibi S, Abbas G, Khan MZ, Nawaz T, Ullah Q, Uddin A, Khan MF, Ghafoor SU, Nadeem MS, Tabassum S, Zahoor M. The mutational analysis of mitochondrial DNA in maternal inheritance of polycystic ovarian syndrome. Front Endocrinol (Lausanne) 2023; 14:1093353. [PMID: 37674615 PMCID: PMC10477912 DOI: 10.3389/fendo.2023.1093353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/17/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Polycystic Ovarian Syndrome (PCOS) is a globally prevalent condition that leads to infertility in women. While environmental factors contribute to PCOS, maternal genetics also play a significant role. Currently, there is no definitive test for identifying predisposition to PCOS. Hence, our objective is to discover novel maternal genetic risk factors for PCOS by investigating the genomes of patients from Pakistan. Methods We utilized Next-Generation Sequencing (NGS) to sequence the complete mitochondrial DNA of three PCOS patients. Subsequently, we employed MitoTIP (Mitochondrial tRNA Informatics Predictor) and PON-mt-tRNA tools to identify variations in the mitochondrial DNA. Our analysis focused on the genes MT-RNR1, MT-RNR2, MT-ATP6, MT-TL2, and MT-CYTB, which displayed common variations in all three genomes. Additionally, we observed individual variations. The D-loop region exhibited the highest frequency of mutations, followed by the non-coding regions of RNR1 and RNR2 genes. Moreover, we detected frameshift mutations in the mitochondrially encoded NADH Dehydrogenase 2 (MT-ND2) and mitochondrially encoded NADH Dehydrogenase 5 (ND5) genes within individual genomes. Results Our analysis unveiled six regions with common variations in the mitochondrial DNA of all three PCOS patients. Notably, the MT-RNR1, MT-RNR2, MT-ATP6, MT-TL2, and MT-CYTB genes exhibited these variations. Additionally, we identified individual variations in the mitochondrial DNA. The D-loop region displayed the highest mutation frequency, followed by the non-coding regions of RNR1 and RNR2 genes. Furthermore, frameshift mutations were detected in the MT-ND2 and ND5 genes within individual genomes. Conclusion Through our study, we have identified variations in mitochondrial DNA that may be associated with the development of PCOS and have the potential to serve as predisposition tests. Our findings highlight the presence of novel mutations in the MT-RNR1, MT-RNR2, MT-ATP6, MT-TL2, and MT-CYTB genes, as well as frameshift mutations in the MT-ND2 and ND5 genes. Pathogenicity analysis indicated that most variants were likely to result in benign cysts. However, the frameshift mutations in the ND2 gene were associated with a high risk of complications and pathogenicity in PCOS. This is the first report identifying these mutations and their association with PCOS, contributing to our understanding of the genetic factors underlying the condition.
Collapse
Affiliation(s)
- Shaheen Bibi
- Department of Zoology, Hazara University, Mansehra, Pakistan
| | - Ghulam Abbas
- Department of Biotechnology, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Muhammad Zahoor Khan
- Faculty of Veterinary and Animal Science, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Tanzeela Nawaz
- Department of Zoology, Hazara University, Mansehra, Pakistan
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Science, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Aziz Uddin
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | | | - Sajid Ul Ghafoor
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Sadia Tabassum
- Department of Zoology, Hazara University, Mansehra, Pakistan
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Shukla P, Melkani GC. Mitochondrial epigenetic modifications and nuclear-mitochondrial communication: A new dimension towards understanding and attenuating the pathogenesis in women with PCOS. Rev Endocr Metab Disord 2023; 24:317-326. [PMID: 36705802 PMCID: PMC10150397 DOI: 10.1007/s11154-023-09789-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 01/28/2023]
Abstract
Mitochondrial DNA (mtDNA) epigenetic modifications have recently gained attention in a plethora of complex diseases, including polycystic ovary syndrome (PCOS), a common cause of infertility in women of reproductive age. Herein we discussed mtDNA epigenetic modifications and their impact on nuclear-mitochondrial interactions in general and the latest advances indicating the role of mtDNA methylation in the pathophysiology of PCOS. We highlighted epigenetic changes in nuclear-related mitochondrial genes, including nuclear transcription factors that regulate mitochondrial function and may be involved in the development of PCOS or its related traits. Additionally, therapies targeting mitochondrial epigenetics, including time-restricted eating (TRE), which has been shown to have beneficial effects by improving mitochondrial function and may be mediated by epigenetic modifications, have also been discussed. As PCOS has become a major metabolic disorder and a risk factor for obesity, cardiometabolic disorders, and diabetes, lifestyle/behavior intervention using TRE that reinforces feeding-fasting rhythms without reducing caloric intake may be a promising therapeutic strategy for attenuating the pathogenesis. Furthermore, future perspectives in the area of mitochondrial epigenetics are described.
Collapse
Affiliation(s)
- Pallavi Shukla
- Department of Molecular Endocrinology, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai, 400012, India.
| | - Girish C Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| |
Collapse
|
8
|
Shukla P, Mukherjee S, Patil A, Joshi B. Molecular characterization of variants in mitochondrial DNA encoded genes using next generation sequencing analysis and mitochondrial dysfunction in women with PCOS. Gene 2023; 855:147126. [PMID: 36563715 DOI: 10.1016/j.gene.2022.147126] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Emerging studies indicates mitochondrial dysfunction and involvement of mitochondrial DNA (mtDNA) variants in the pathogenesis of polycystic ovary syndrome (PCOS). Cumulative effect of mtDNA rare variants are now gaining considerable interest apart from common variants in the pathogenesis of complex diseases. Rare variants may modify the effect of polymorphism or in combination with the common variants may affect the risk of disease. With the evolution of high throughput sequencing techniques, which can be utilized to identify common as well as rare variants along with heteroplasmy levels, comprehensive characterization of the mtDNA variants is possible. Till date, few studies reported common mtDNA variants using traditional sequencing techniques but rare variants in mtDNA encoding genes remain unexplored in women with PCOS. These mtDNA variants may be responsible for mitochondrial dysfunction and may contribute in PCOS pathogenesis. In this study we determined mtDNA copy number, a biomarker of mitochondrial dysfunction and first time analysed variants in mtDNA encoded genes in women with PCOS using mitochondrial Next Generation sequencing (NGS) approach and compared allele frequency from mitochondrial 1000 genome dataset. Variant annotation and prioritization was done using highly automated pipeline, MToolBox that excludes reads mapped from nuclear mitochondrial DNA sequences (NumtS) to identify unique mtDNA reads. The present study identified significant reduction in mtDNA copy number in women with PCOS compared to non-PCOS women. A total of unique 214 prioritized common to rare variants were identified in mtDNA encoded genes, 183 variants in OXPHOS complexes, 14 variants in MT-tRNA and 17 variants in MT-rRNA genes that may be involved in mitochondrial dysfunction in PCOS. Numerous variants were heteroplasmic, pathogenic in nature and occurred in evolutionary conserved region. Heteroplasmic variants were more frequently occurred in MT-CO3 gene. Non-synonymous variants were more than synonymous variants and mainly occurred in OXPHOS complex I and IV. Few variants were found to be associated with diseases in MITOMAP database. The study provides a better understanding towards pathogenesis of PCOS from novel aspects focusing on mitochondrial genetic defects as underlying cause for contributing mitochondrial dysfunction in women with PCOS.
Collapse
Affiliation(s)
- Pallavi Shukla
- Department of Molecular Endocrinology, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai 400012, India.
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai 400012, India
| | - Anushree Patil
- Department of Clinical Research, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai 400012, India
| | - Beena Joshi
- Department of Operational Research, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai 400012, India
| |
Collapse
|
9
|
Finsterer J. Mitochondrial Dysfunction in Polycystic Ovary Syndrome. Reprod Sci 2022; 30:1435-1442. [PMID: 36221022 DOI: 10.1007/s43032-022-01100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a multi-causal condition. Among the genetic causes, variations in the mitochondrial DNA (mtDNA) are increasingly recognised as causative. PCOS not only occurs in known syndromic mitochondrial disorders due to pathogenic variants in the mtDNA but also in non-syndromic mitochondrial disorders. Additionally, mtDNA variants not causing a multi-system mitochondrial disorder but exclusively PCOS have been reported. Among the syndromic mitochondrial disorders, PCOS has been described in myoclonic epilepsy with ragged-red fibre (MERRF) syndrome. Among the non-syndromic mitochondrial disorders, PCOS has been described in association with insulin resistance. Several other studies suggest that mtDNA point mutations or mtDNA deletions can be associated with PCOS without manifesting in organs other than the ovaries. Evidence from animal studies suggests that function, morphology, and biogenesis of mitochondria in ovarian tissue are generally impaired in PCOS patients. In conclusion, there is increasing evidence that mtDNA variants play a pathophysiological role in the development of PCOS. Further studies are needed to establish the causal link between mtDNA variants and PCOS.
Collapse
Affiliation(s)
- Josef Finsterer
- Neurology & Neurophysiology Center, Postfach 20, 1180, Vienna, Austria.
| |
Collapse
|
10
|
Moosa A, Ghani M, O'Neill HC. Genetic associations with polycystic ovary syndrome: the role of the mitochondrial genome; a systematic review and meta-analysis. J Clin Pathol 2022; 75:815-824. [DOI: 10.1136/jcp-2021-208028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
BackgroundPolycystic ovary syndrome (PCOS) remains the most common female reproductive endocrine disorder. Genetic studies have predominantly focused on the role of the nuclear genome, while the contribution of mitochondrial genetics in PCOS remains largely unknown.AimThis study aims to systematically evaluate the literature regarding the associations between the mitochondrial genome and PCOS.MethodsA literature search focused on PCOS and mitochondrial genetics was conducted on (1) MEDLINE, (2) EMBASE and (3) The Cochrane Library (CENTRAL and Cochrane Reviews). Search results were screened for eligibility, and data involving genetic variants of mitochondrial DNA (mtDNA) were extracted. Quantitative data were presented in forest plots, and where this was not possible, data were analysed in a qualitative manner. Quality of studies was assessed using the Q-Genie tool.ResultsOf the 13 812 identified studies, 15 studies were eligible for inclusion, with 8 studies suitable for meta-analysis. Women with PCOS showed higher frequencies of a 9 bp deletion, and aberrant single nucleotide polymorphisms (SNPs) in the ND5, A6 and 7 transfer RNA-encoding genes. They also showed lower frequencies of two SNPs in the D-loop of the genome. Women with PCOS also exhibited significantly lowered mtDNA copy number.ConclusionWomen with PCOS harbour genetic variants in coding and non-coding regions of the mitochondrial genome. This may disrupt the electron transport chain and lead to oxidative stress, causing apoptosis of cells and further genetic damage. However, further studies of higher quality are required to confirm these associations.PROSPERO registration numberCRD42021267991.
Collapse
|
11
|
Azumah R, Hummitzsch K, Hartanti MD, St. John JC, Anderson RA, Rodgers RJ. Analysis of Upstream Regulators, Networks, and Pathways Associated With the Expression Patterns of Polycystic Ovary Syndrome Candidate Genes During Fetal Ovary Development. Front Genet 2022; 12:762177. [PMID: 35197999 PMCID: PMC8860493 DOI: 10.3389/fgene.2021.762177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a multifactorial syndrome with reproductive, endocrine, and metabolic symptoms, affecting about 10% women of reproductive age. Pathogenesis of the syndrome is poorly understood with genetic and fetal origins being the focus of the conundrum. Genetic predisposition of PCOS has been confirmed by candidate gene studies and Genome-Wide Association Studies (GWAS). Recently, the expression of PCOS candidate genes across gestation has been studied in human and bovine fetal ovaries. The current study sought to identify potential upstream regulators and mechanisms associated with PCOS candidate genes. Using RNA sequencing data of bovine fetal ovaries (62-276 days, n = 19), expression of PCOS candidate genes across gestation was analysed using Partek Flow. A supervised heatmap of the expression data of all 24,889 genes across gestation was generated. Most of the PCOS genes fell into one of four clusters according to their expression patterns. Some genes correlated negatively (early genes; C8H9orf3, TOX3, FBN3, GATA4, HMGA2, and DENND1A) and others positively (late genes; FDFT1, LHCGR, AMH, FSHR, ZBTB16, and PLGRKT) with gestational age. Pathways associated with PCOS candidate genes and genes co-expressed with them were determined using Ingenuity pathway analysis (IPA) software as well as DAVID Bioinformatics Resources for KEGG pathway analysis and Gene Ontology databases. Genes expressed in the early cluster were mainly involved in mitochondrial function and oxidative phosphorylation and their upstream regulators included PTEN, ESRRG/A and MYC. Genes in the late cluster were involved in stromal expansion, cholesterol biosynthesis and steroidogenesis and their upstream regulators included TGFB1/2/3, TNF, ERBB2/3, VEGF, INSIG1, POR, and IL25. These findings provide insight into ovarian development of relevance to the origins of PCOS, and suggest that multiple aetiological pathways might exist for the development of PCOS.
Collapse
Affiliation(s)
- Rafiatu Azumah
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Katja Hummitzsch
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Monica D. Hartanti
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Faculty of Medicine, Universitas Trisakti, Jakarta, Indonesia
| | - Justin C. St. John
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Raymond J. Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
12
|
Dabravolski SA, Nikiforov NG, Eid AH, Nedosugova LV, Starodubova AV, Popkova TV, Bezsonov EE, Orekhov AN. Mitochondrial Dysfunction and Chronic Inflammation in Polycystic Ovary Syndrome. Int J Mol Sci 2021; 22:3923. [PMID: 33920227 PMCID: PMC8070512 DOI: 10.3390/ijms22083923] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine-metabolic disorder affecting a vast population worldwide; it is linked with anovulation, mitochondrial dysfunctions and hormonal disbalance. Mutations in mtDNA have been identified in PCOS patients and likely play an important role in PCOS aetiology and pathogenesis; however, their causative role in PCOS development requires further investigation. As a low-grade chronic inflammation disease, PCOS patients have permanently elevated levels of inflammatory markers (TNF-α, CRP, IL-6, IL-8, IL-18). In this review, we summarise recent data regarding the role of mtDNA mutations and mitochondrial malfunctions in PCOS pathogenesis. Furthermore, we discuss recent papers dedicated to the identification of novel biomarkers for early PCOS diagnosis. Finally, traditional and new mitochondria-targeted treatments are discussed. This review intends to emphasise the key role of oxidative stress and chronic inflammation in PCOS pathogenesis; however, the exact molecular mechanism is mostly unknown and requires further investigation.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora str., 210026 Vitebsk, Belarus
| | - Nikita G. Nikiforov
- Center of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia;
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Ludmila V. Nedosugova
- Federal State Autonomous Educational Institution of Higher Education, I. M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubenskaya Street, 119991 Moscow, Russia;
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
| |
Collapse
|
13
|
Cell-free mtDNA level and its biomarker potency for ART outcome are different in follicular fluid of PCOS and non-PCOS women. Mitochondrion 2021; 59:30-36. [PMID: 33839320 DOI: 10.1016/j.mito.2021.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Lack of reliable biomarkers for estimating the outcome is one of the current gaps in ART. In this study, we assessed whether cell-free mitochondrial DNA within the follicular fluid (FF cf-mtDNA) of PCOS patients has biomarker applicability or not. Furthermore, probable involved mechanisms in the FF cf-mtDNA pathway were evaluated. METHODS The level of FF cf-mtDNA was compared between 50 PCOS patients and 50 women without any certain reproductive disorder, and analyzed for correlations with ART outcome. The associations between levels of FF cf-mtDNA and TFAM, POLG, and RNase H1 genes expression in mural granulosa cells (MGCs), as well as IL-6, and TNFα in follicular fluid (FF) were assessed. RESULTS We identified that FF cf-mtDNA level was significantly lower in PCOS women and was accompanied by a reduction in the expression of mtDNA biogenesis genes in MGCs of the patients. Although a significant association between FF cf-mtDNA level and ART outcome was observed in the control group, no correlation could be proved in the PCOS group. Moreover, the expression level of TFAM was negatively associated, while amounts of IL-6 and TNFα were positively correlated with FF cf-mtDNA level in both groups. CONCLUSION PCOS patients present a lower FF cf-mtDNA level in comparison with non-PCOS women. FF cf-mtDNA has biomarker applicability for ART outcome in women without any certain reproductive disorder, but not for those with PCOS. It seems that mtDNA packaging dysfunction results in elevated FF cf-mtDNA, and subsequent effects are triggered by increasing the inflammatory cytokines.
Collapse
|
14
|
Methods for simultaneous and quantitative isolation of mitochondrial DNA, nuclear DNA and RNA from mammalian cells. Biotechniques 2020; 69:436-442. [PMID: 33103926 DOI: 10.2144/btn-2020-0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to assess two protocols for their capacities to simultaneously isolate RNA, mtDNA and ncDNA from mammalian cells. We compared the Invitrogen TRIzol-based method and Qiagen DNeasy columns, using the HepG2 cell line and human primary glioblastoma stem cells. Both methods allowed the isolation of all three types of nucleic acids and provided similar yields in mtDNA. However, the yield in ncDNA was more than tenfold higher on columns, as observed for both cell types. Conversely, the TRIzol method proved more reproducible and was the method of choice for isolating RNA from glioblastoma cells, as demonstrated for the housekeeping genes RPLP0 and RPS9.
Collapse
|