1
|
Yi Q, Feng J, Lan W, Shi H, Sun W, Sun W. CircRNA and lncRNA-encoded peptide in diseases, an update review. Mol Cancer 2024; 23:214. [PMID: 39343883 PMCID: PMC11441268 DOI: 10.1186/s12943-024-02131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Non-coding RNAs (ncRNAs), including circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), are unique RNA molecules widely identified in the eukaryotic genome. Their dysregulation has been discovered and played key roles in the pathogenesis of numerous diseases, including various cancers. Previously considered devoid of protein-coding ability, recent research has revealed that a small number of open reading frames (ORFs) within these ncRNAs endow them with the potential for protein coding. These ncRNAs-derived peptides or proteins have been proven to regulate various physiological and pathological processes through diverse mechanisms. Their emerging roles in disease diagnosis and targeted therapy underscore their potential utility in clinical settings. This comprehensive review aims to provide a systematic overview of proteins or peptides encoded by lncRNAs and circRNAs, elucidate their production and functional mechanisms, and explore their promising applications in cancer diagnosis, disease prediction, and targeted therapy.
Collapse
Affiliation(s)
- Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Weiwu Lan
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China.
| |
Collapse
|
2
|
Amroodi MN, Maghsoudloo M, Amiri S, Mokhtari K, Mohseni P, Pourmarjani A, Jamali B, Khosroshahi EM, Asadi S, Tabrizian P, Entezari M, Hashemi M, Wan R. Unraveling the molecular and immunological landscape: Exploring signaling pathways in osteoporosis. Biomed Pharmacother 2024; 177:116954. [PMID: 38906027 DOI: 10.1016/j.biopha.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Osteoporosis, characterized by compromised bone density and microarchitecture, represents a significant global health challenge, particularly in aging populations. This comprehensive review delves into the intricate signaling pathways implicated in the pathogenesis of osteoporosis, providing valuable insights into the pivotal role of signal transduction in maintaining bone homeostasis. The exploration encompasses cellular signaling pathways such as Wnt, Notch, JAK/STAT, NF-κB, and TGF-β, all of which play crucial roles in bone remodeling. The dysregulation of these pathways is a contributing factor to osteoporosis, necessitating a profound understanding of their complexities to unveil the molecular mechanisms underlying bone loss. The review highlights the pathological significance of disrupted signaling in osteoporosis, emphasizing how these deviations impact the functionality of osteoblasts and osteoclasts, ultimately resulting in heightened bone resorption and compromised bone formation. A nuanced analysis of the intricate crosstalk between these pathways is provided to underscore their relevance in the pathophysiology of osteoporosis. Furthermore, the study addresses some of the most crucial long non-coding RNAs (lncRNAs) associated with osteoporosis, adding an additional layer of academic depth to the exploration of immune system involvement in various types of osteoporosis. Finally, we propose that SKP1 can serve as a potential biomarker in osteoporosis.
Collapse
Affiliation(s)
- Morteza Nakhaei Amroodi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shayan Amiri
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parnaz Mohseni
- Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Pourmarjani
- Department of Pediatrics, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behdokht Jamali
- Department of microbiology and genetics, kherad Institute of higher education, Busheher, lran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Tabrizian
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
3
|
Pan Q, Lou J, Yan P, Kang X, Li P, Huang Z. WTAP contributes to the tumorigenesis of osteosarcoma via modulating ALB in an m6A-dependent manner. ENVIRONMENTAL TOXICOLOGY 2023; 38:1455-1465. [PMID: 36988233 DOI: 10.1002/tox.23780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/22/2023] [Accepted: 03/05/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE Osteosarcoma (OS) is a prevalent bone malignancy mainly occurred in adolescents. WTAP/N6-methyladenosine (m6A) modification is confirmed to be involved in OS progression. This study is conducted to bring some novel insights to the action mechanism of WTAP/m6A under the hidden pathogenesis of OS. METHODS qRT-PCR was executed to evaluate the expression levels of WTAP and ALB. ALB protein level in OS cells was measured by western blotting. The content of m6A in total RNA was assessed by m6A quantification assay. Me-RIP, dual luciferase reporter, and mRNA stability assays confirmed the target relationship of WTAP with ALB. With the use of the wound healing, CCK-8, and transwell invasion assays, the functional relationship between WTAP and ALB in OS cells was confirmed. The influences of WTAP on tumor growth in vivo were performed in the xenograft model of mouse. RESULTS WTAP was increased but ALB was diminished in OS tissues and/or cell lines. WTAP modulated ALB expression in an m6A-dependent manner. Silencing of WTAP retarded the development of OS via inhibiting cell viability, migration, invasion, and tumor growth. Knockdown of ALB exerted the opposite effects on OS progression. Additionally, ALB deficiency partially eliminated the inhibiting effects of WTAP silencing on cellular processes in OS. CONCLUSIONS This is the first report to clarify the interaction of WTAP/m6A with ALB in OS progression. These experimental data to some extent broadened the horizons of WTAP/m6A in the development of OS.
Collapse
Affiliation(s)
- Qiyong Pan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jigang Lou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaobiao Kang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengfei Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Zhang B, Luo C, Xiao W. Induction of osteoclast formation by LOX mutant (LOXG473A) through regulation of autophagy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1474. [PMID: 34734026 PMCID: PMC8506719 DOI: 10.21037/atm-21-4474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
Background Lysyl oxidase (LOX) has been identified to modulate osteoclast activity, so we explored the role of LOXG473A, the highest frequency single nucleotide polymorphism in LOX, in osteoclast formation and its potential relationship to autophagy. Methods The ability of the LOX mutant, LOXG473A, to promote autophagy and osteoclast formation was evaluated in the pre-osteoclast cell line RAW264.7. Furthermore, autophagy-related protein expression and autophagosomes were detected by western blot and electron microscopy, respectively. Simultaneously, osteoclast formation and resorption ability were also detected using TRAP staining assay and bone resorption assay. In addition, the osteoclast-related proteins and mRNAs, as well as p-AMPKα and p-mTOR proteins, were further evaluated by western blot and qPCR assays. Results Autophagy inhibitor 3-MA suppressed the Beclin-1 and ATG5 protein levels and the ratio of LC3-II to LC3-I, as well as autophagosome formation in RAW264.7 transfected with the MUT plasmid and enhanced p62 protein expression. Simultaneously, 3-MA also reduced osteoclast formation and resorption, as well as the F-actin ring level of osteoclasts. In addition, 3-MA inhibited osteoclast-related protein and mRNA expression, including NFATC1, ACP5, CTSK. And the autophagy-related pathway protein p-AMPKα was increased and p-mTOR was reduced by 3-MA treatment. However, autophagy agonist RAPA reversed the effect of 3-MA on RAW264.7 with LOXG473A mutation, indicating that promoting autophagy could enhance the ability of LOXG473A to induce osteoclast formation. Conclusions LOX mutant (LOXG473A) might promote osteoclast formation for RAW264.7 by enhancing autophagy via the AMPK/mTOR pathway, which is a new direction for bone disease research.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenglin Luo
- Department of Gastroenterology, Suzhou Xiangcheng People's Hospital, Suzhou, China
| | - Wenjin Xiao
- Department of Endocrinology, Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Tang W, Liu Q, Tan W, Sun T, Deng Y. LncRNA expression profile analysis of Mg 2+-induced osteogenesis by RNA-seq and bioinformatics. Genes Genomics 2021; 43:1247-1257. [PMID: 34427873 DOI: 10.1007/s13258-021-01140-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND In recent years, magnesium (Mg) has been extensively studied for manufacturing biodegradable orthopedic devices. Besides other advantages, researches have shown that magnesium-based implants can stimulate osteogenesis thus accelerating orthopedic trauma recovery, but its molecular mechanism is not fully understood. Meanwhile, long non-coding RNA (lncRNA) has been found to play vital role in regulating osteogenic differentiation. OBJECTIVE To explore the role of lncRNA in Mg2+ (magnesium ions)-induced osteogenesis. METHODS The effect of Mg2+ on mBMSCs proliferation was detected by the CCK-8 assay. The optimum concentration of Mg2+ (7.5 mM) in promoting mBMSCs osteogenesis was determined by ALP staining and Alizarin red staining, western blot and RT-qPCR were performed to detect osteogenic markers expressions. The lncRNAs and mRNAs expression profiles of mBMSCs were assessed by RNA-Seq and processed by bioinformatics analysis. The selected lncRNAs expression level was validated by RT-qPCR. RESULTS The effect of Mg2+ in promoting osteogenesis was confirmed and the optimum concentration was determined as 7.5 mM. The lncRNAs and mRNAs differentially expressed between 7.5 mM Mg2+-treated group and control group was detected and functional analysis revealed that their function were associated with osteogenesis. The ceRNA networks were constructed for H19 and Dubr that aberrantly expressed in two groups. The ceRNA networks of selected lncRNAs (H19 and Dubr) were constructed. CONCLUSIONS This study identified H19 and Dubr as osteogenic associated lncRNAs involved in Mg2+-induced osteogenesis, and they might play their roles through lncRNA-miRNA-mRNA axis.
Collapse
Affiliation(s)
- Wen Tang
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Qing Liu
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Wei Tan
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Tianshi Sun
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Youwen Deng
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
6
|
Lu J, Wu Z, Xiong Y. Knockdown of long noncoding RNA HOTAIR inhibits osteoarthritis chondrocyte injury by miR-107/CXCL12 axis. J Orthop Surg Res 2021; 16:410. [PMID: 34183035 PMCID: PMC8237457 DOI: 10.1186/s13018-021-02547-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/08/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a joint disease characterized via destruction of cartilage. Chondrocyte damage is associated with cartilage destruction during OA. Long noncoding RNAs (lncRNAs) are implicated in the regulation of chondrocyte damage in OA progression. This study aims to investigate the role and underlying mechanism of lncRNA homeobox antisense intergenic RNA (HOTAIR) in OA chondrocyte injury. METHODS Twenty-three OA patients and healthy controls without OA were recruited. Chondrocytes were isolated from OA cartilage tissues. HOTAIR, microRNA-107 (miR-107) and C-X-C motif chemokine ligand 12 (CXCL12) levels were measured by quantitative real-time polymerase chain reaction and western blot. Cell proliferation, apoptosis and extracellular matrix (ECM) degradation were measured using cell counting kit-8, flow cytometry and western blot. The target interaction was explored by bioinformatics, luciferase reporter and RNA immunoprecipitation assays. RESULTS HOTAIR expression was enhanced, and miR-107 level was reduced in OA cartilage samples. HOTAIR overexpression inhibited cell proliferation, but induced cell apoptosis and ECM degradation in chondrocytes. HOTAIR knockdown caused an opposite effect. MiR-107 was sponged and inhibited via HOTAIR, and knockdown of miR-107 mitigated the effect of HOTAIR silence on chondrocyte injury. CXCL12 was targeted by miR-107. CXCL12 overexpression attenuated the roles of miR-107 overexpression or HOTAIR knockdown in the proliferation, apoptosis and ECM degradation. CXCL12 expression was decreased by HOTAIR silence, and restored by knockdown of miR-107. CONCLUSION HOTAIR knockdown promoted chondrocyte proliferation, but inhibited cell apoptosis and ECM degradation in OA chondrocytes by regulating the miR-107/CXCL12 axis.
Collapse
Affiliation(s)
- Jipeng Lu
- Department of Orthopedics, Yan'an Hospital Affiliated to Kunming Medical University, No. 245 Renmin East Road, Panlong District, Kunming, 650051, Yunnan, China
| | - Zhongxiong Wu
- Department of Orthopedics, Yan'an Hospital Affiliated to Kunming Medical University, No. 245 Renmin East Road, Panlong District, Kunming, 650051, Yunnan, China.
| | - Ying Xiong
- Department of Orthopedics, Yan'an Hospital Affiliated to Kunming Medical University, No. 245 Renmin East Road, Panlong District, Kunming, 650051, Yunnan, China
| |
Collapse
|
7
|
Guo G, Gou Y, Jiang X, Wang S, Wang R, Liang C, Yang G, Wang T, Yu A, Zhu G. Long Non-coding RNAs in Traumatic Brain Injury Accelerated Fracture Healing. Front Surg 2021; 8:663377. [PMID: 34150839 PMCID: PMC8211774 DOI: 10.3389/fsurg.2021.663377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
It is commonly observed that patients with bone fracture concomitant with traumatic brain injury (TBI) had significantly increased fracture healing, but the underlying mechanisms were not fully revealed. Long non-coding RNAs (lncRNAs) are known to play complicated roles in bone homeostasis, but their role in TBI accelerated fracture was rarely reported. The present study was designed to determine the role of lncRNAs in TBI accelerated fracture via transcriptome sequencing and further bioinformatics analyses. Blood samples from three fracture-only patients, three fracture concomitant with TBI patients, and three healthy controls were harvested and were subsequently subjected to transcriptome lncRNA sequencing. Differentially expressed genes were identified, and pathway enrichment was performed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. High-dimensional data visualization by self-organizing map (SOM) machine learning was applied to further interpret the data. An xCell method was then used to predict cellular behavior in all samples based on gene expression profiles, and an lncRNA-cell interaction network was generated. A total of 874 differentially expressed genes were identified, of which about 26% were lncRNAs. Those identified lncRNAs were mainly enriched on TBI-related and damage repair-related pathways. SOM analyses revealed that those differentially expressed lncRNAs could be divided into three major module implications and were mainly enriched on transcriptional regulation and immune-related signal pathways, which promote us to further explore cellular behaviors based on differentially expressed lncRNAs. We have predicted that basophils, CD8+ T effector memory cells, B cells, and naïve B cells were significantly downregulated, while microvascular endothelial cells were predicted to be significantly upregulated in the Fr/TBI group, was the lowest and highest, respectively. ENSG00000278905, ENSG00000240980, ENSG00000255670, and ENSG00000196634 were the most differentially expressed lncRNAs related to all changes of cellular behavior. The present study has revealed for the first time that several critical lncRNAs may participate in TBI accelerated fracture potentially via regulating cellular behaviors of basophils, cytotoxic T cells, B cells, and endothelial cells.
Collapse
Affiliation(s)
- Guoning Guo
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Yajun Gou
- Department of Orthopedic, Shapingba District Hospital, Chongqing, China
| | - Xingyu Jiang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Shuhong Wang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Ruilie Wang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Changqiang Liang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Guang Yang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Tinggang Wang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Anyong Yu
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Guoyan Zhu
- Department of Health Management, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
8
|
Zhang Y, Wang Y, Ying L, Tao S, Shi M, Lin P, Wang Y, Han B. Regulatory Role of N6-methyladenosine (m 6A) Modification in Osteosarcoma. Front Oncol 2021; 11:683768. [PMID: 34094986 PMCID: PMC8170137 DOI: 10.3389/fonc.2021.683768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
Osteosarcoma is the most common primary bone malignancy, typically occurring in childhood or adolescence. Unfortunately, the clinical outcomes of patients with osteosarcoma are usually poor because of the aggressive nature of this disease and few treatment advances in the past four decades. N6-methyladenosine (m6A) is one of the most extensive forms of RNA modification in eukaryotes found both in coding and non-coding RNAs. Accumulating evidence suggests that m6A-related factors are dysregulated in multiple osteosarcoma processes. In this review, we highlight m6A modification implicated in osteosarcoma, describing its pathophysiological role and molecular mechanism, as well as future research trends and potential clinical application in osteosarcoma.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyan Wang
- Department of Oncology Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liwei Ying
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sifeng Tao
- Department of Oncology Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingmin Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangxin Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Han
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Chen Y, Tang G, Qian H, Chen J, Cheng B, Zhou C, Shen Y. LncRNA LOC100129620 promotes osteosarcoma progression through regulating CDK6 expression, tumor angiogenesis, and macrophage polarization. Aging (Albany NY) 2021; 13:14258-14276. [PMID: 34015762 PMCID: PMC8202873 DOI: 10.18632/aging.203042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/04/2021] [Indexed: 01/30/2023]
Abstract
Osteosarcoma is a malignant tumor with high mortality in children and adolescents. The mechanism of osteosarcoma metastasis is currently unclear. Abnormal expression of long non-coding RNA (lncRNA) plays an important role in tumor metastasis. We used bioinformatics to analyze the differences in gene expression between osteosarcoma in situ and osteosarcoma lung metastases. CCK-8 was used to detect the effect of lncRNA LOC100129620 on the proliferation of osteosarcoma cells. The effect of LOC100129620 on the invasion of osteosarcoma cells was assessed by Transwell assay. The regulatory effect of LOC100129620 on miR-335-3p was examined using RNA pull-down and luciferase reporter gene assays. The effect of LOC100129620 on the polarization of macrophages was detected by quantitative real-time fluorescent PCR. The results show that LOC100129620 can promote the proliferation and migration of osteosarcoma cells. LOC100129620 can promote the proliferation of osteosarcoma in vivo. LOC100129620 can bind to miR-335-3p and regulate its function. MiR-335-3p mediates the regulatory effects of LOC100129620 on CDK6. LOC100129620 promotes the formation of blood vessels and the polarization of macrophages. The LOC100129620/miR-335-3p/CDK6 signaling pathway promotes the metastasis of osteosarcoma by regulating the proliferation of osteosarcoma cells, angiogenesis, and macrophage polarization.
Collapse
Affiliation(s)
- Yong Chen
- Orthopedic Center, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Kunshan Hospital of Traditional Chinese Medicine, Kunshan 215300, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Guoqing Tang
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan 215300, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Hongbin Qian
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan 215300, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ji Chen
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan 215300, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Bing Cheng
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan 215300, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Chengliang Zhou
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan 215300, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yixin Shen
- Orthopedic Center, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Chen G, Tang W, Wang S, Long C, He X, Yang D, Peng S. Promising diagnostic and therapeutic circRNAs for skeletal and chondral disorders. Int J Biol Sci 2021; 17:1428-1439. [PMID: 33867856 PMCID: PMC8040475 DOI: 10.7150/ijbs.57887] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Circular RNAs (circRNAs) belong to a highly conserved subtype of non-coding RNAs, produced by the back-splicing of specific regions of pre-mRNA. CircRNAs have wide-ranging effects on eukaryotic physiology and pathology by acting as transcription regulators, miRNA sponges, protein sponges, and templates for translation. Skeletal and chondral disorders are the leading causes of pain and disability, especially for elders, affecting hundreds of millions of people worldwide. Plenty of evidence have shown that circRNAs are dysregulated and play vital roles in the occurrence and progression of skeletal and chondral disorders. Herein, we systematically summarize the emerging roles and underlying molecular mechanisms of hub circRNAs in the pathogenesis of several representative skeletal and chondral disorders. Our findings may provide further insight into the mechanistic details of the role of circRNA in bone or cartilage metabolism, and highlight the promising application of circRNAs in serving as potential diagnostic or therapeutic targets for the prevention and treatment of skeletal and chondral disorders.
Collapse
Affiliation(s)
- Gaoyang Chen
- Department of Spine Surgery and Institute for Orthopaedic Research, the 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Key Laboratory of Reconstruction of Sports System, Shenzhen, 518055, China
| | - Wanze Tang
- Department of Spine Surgery and Institute for Orthopaedic Research, the 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Key Laboratory of Reconstruction of Sports System, Shenzhen, 518055, China
| | - Shang Wang
- Department of Spine Surgery and Institute for Orthopaedic Research, the 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Key Laboratory of Reconstruction of Sports System, Shenzhen, 518055, China
| | - Canling Long
- Department of Spine Surgery and Institute for Orthopaedic Research, the 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Key Laboratory of Reconstruction of Sports System, Shenzhen, 518055, China
| | - Xiaoqin He
- Department of Spine Surgery and Institute for Orthopaedic Research, the 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Key Laboratory of Reconstruction of Sports System, Shenzhen, 518055, China
| | - Dazhi Yang
- Department of Spine Surgery and Institute for Orthopaedic Research, the 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Key Laboratory of Reconstruction of Sports System, Shenzhen, 518055, China
| | - Songlin Peng
- Department of Spine Surgery and Institute for Orthopaedic Research, the 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen Key Laboratory of Reconstruction of Sports System, Shenzhen, 518055, China
| |
Collapse
|
11
|
Penolazzi L, Lambertini E, Piva R. The Adequacy of Experimental Models and Understanding the Role of Non-coding RNA in Joint Homeostasis and Disease. Front Genet 2020; 11:563637. [PMID: 33193647 PMCID: PMC7581901 DOI: 10.3389/fgene.2020.563637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Letizia Penolazzi
- Department of Biomedical & Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Elisabetta Lambertini
- Department of Biomedical & Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Piva
- Department of Biomedical & Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy.,University Center for Studies on Gender Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Wang L, Jiang J, Sun G, Zhang P, Li Y. Effects of lncRNA TUSC7 on the malignant biological behavior of osteosarcoma cells via regulation of miR-375. Oncol Lett 2020; 20:133. [PMID: 32934702 PMCID: PMC7471645 DOI: 10.3892/ol.2020.11994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
The present study aimed at investigating how long-chain non-coding RNA (lncRNA) tumor suppressor candidate 7 (TUSC7) regulates the malignant biological behavior of osteosarcoma cells. Tumor tissues and adjacent tissues of 30 patients with osteosarcoma were collected, and the expression levels of lncRNA TUSC7 and miR-375 were detected by RT-qPCR. lncRNA TUSC7 mimic and miR-375 mimic transfection models were established in MG63 osteosarcoma cells, and Transwell assays were used to detect the migration ability of MG63 cells. An MTT assay was used to assess the proliferation ability of MG63 cells. lncRNA TUSC7 in osteosarcoma tissue was significantly lower than that of adjacent tissues, while miR-375 levels were significantly higher than that of adjacent tissues; the two levels have a negative correlation. lncRNA TUSC7 mimic inhibited MG63 proliferation and migration abilities. miR-375 mimic promoted MG63 proliferation and migration abilities. The lncRNA TUSC7 mimic and miR-375 mimic co-transfection system could partially rescue the inhibition of lncRNA TUSC7 mimic on MG63 cells. In conclusion, lncRNA TUSC7 inhibited the proliferation and migration of MG63 osteosarcoma cells by regulating miR-375.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Spinal Surgery, ShengLi Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Jiankui Jiang
- Department of Hand and Foot Surgery, ShengLi Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Guisen Sun
- Department of Spinal Surgery, ShengLi Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Panpan Zhang
- Department of Spinal Surgery, ShengLi Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Ya Li
- Department of Spinal Surgery, ShengLi Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| |
Collapse
|
13
|
Sun F, Yu Z, Wu B, Zhang H, Ruan J. LINC00319 promotes osteosarcoma progression by regulating the miR-455-3p/NFIB axis. J Gene Med 2020; 22:e3248. [PMID: 32621625 DOI: 10.1002/jgm.3248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Numerous studies have shown that aberrant expression of long non-coding RNAs (lncRNAs) is associated with the development and metastasis of osteosarcoma (OS). However, the role and function of LINC00319 with respect to regulating OS progression is unknown. The present study aimed to reveal the function and related mechanism of LINC00319 in OS. METHODS The expression of LINC00319, miR-455-3p and nuclear factor IB (NFIB) in OS cells and tissues was determined using a reverse transcriptase-polymerase chain reaction (PCR). The sublocalization of LINC00319 was predicted by the lncATLAS database (http://lncatlas.crg.eu) and RNA fluorescence in situ hybridization (FISH) was further performed to detect the subcellular localization of LINC00319. LINC00319, miR-455-3p and NFIB target sites were predicted by StarBase (http://starbase.sysu.edu.cn/index.php) and validated using a dual luciferase reporter gene assay. We subsequently performed LINC00319 gain- and loss-of-function studies to define the role of LINC00319 in OS cell migration. RESULTS PCR results showed that lncRNA LINC00319 exhibited high expression in tumor cells and tissue. Moreover, LINC00319 was positioned in the cytoplasm, which was identified by FISH. Knockdown of lncRNA LINC00319/NFIB or overexpression of miR-455-3p blocked the migration of OS cells. In addition, the inhibitory effect of migration with the knockdown of lncRNA LINC00319 was partially blocked by administration of miR-455-3p inhibitor. CONCLUSIONS lncRNA LINC00319 may promote OS progression by regulating the miR-455-3p/NFIB axis, which probably serves as an innovative potential indicator of prognosis and a target of therapy for OS.
Collapse
Affiliation(s)
- Farui Sun
- Department of Orthopedics, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China
| | - Ziliang Yu
- School of Medicine, Nantong University, Nantong, Jiangsu, China.,Department of Orthopedics, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Bingbing Wu
- Department of Orthopedics, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Haiping Zhang
- Department of Orthopedics, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jing Ruan
- Department of Psychology, Huangshi Psychiatric Hospital, Huangshi, Hubei, China
| |
Collapse
|